Read Ebook: Darwin and After Darwin Volume 2 of 3 Post-Darwinian Questions: Heredity and Utility by Romanes George John
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 624 lines and 112249 words, and 13 pages
Hence, what I desire to be borne in mind throughout the following discussion is, that it will have exclusive reference to the question of fact already stated, without regard to any superjacent theories; and, still more, that there is a vast distinction between any question touching the degrees in which acquired characters are transmitted to progeny, and the question as to whether they are ever transmitted in any degree at all. Now, the latter question, being of much greater importance than the former, is the one which will mainly occupy our attention throughout the rest of this Section.
Again, when these challenges are thrown down by Weismann and his followers, it appears to be forgotten that the conditions of their own theory are such as to render acceptance of the gauge a matter of great difficulty. The case is very much like that of a doughty knight pitching his glove into the sea, and then defying any antagonist to take it up. That this is the case a very little explanation will suffice to show.
There is, however, one point in this connexion to which allusion must here be made. Although Darwin did not believe in the transmissibility of mutilations when these consist merely in the amputation of parts of an organism, he did believe in a probable tendency to transmission when removal of the part is followed by gangrene. For, as he says, in that case, all the gemmules of the mutilated or amputated part, as they are gradually attracted to that part , will be successively destroyed by the morbid process. Now it is of importance to note that Darwin made this exception to the general rule of the non-transmissibility of mutilations, not because his theory of pangenesis required it, but because there appeared to be certain very definite observations and experiments--which will be mentioned later on--proving that when mutilations are followed by gangrene they are apt to be inherited: his object, therefore, was to reconcile these alleged facts with his theory, quite as much as to sustain his theory by such facts.
In subsequent chapters, especially devoted to the question , the validity of this assumption will be considered on its own merits.
Consequently, the only way in which these speciously-sounding challenges can be adequately met is by removing some individuals of a species from a state of nature, and so from all known influences of natural selection; then, while carefully avoiding artificial selection, causing these individuals and their progeny through many generations unduly to exercise some parts of their bodies, or unduly to fail in the exercise of others. But, clearly, such an experiment is one that must take years to perform, and therefore it is now too early in the day to reproach the followers of Darwin with not having met the challenges which are thrown down by the followers of Weismann.
Probably enough has now been said to show that the Neo-Darwinian assumption precludes the possibility of its own disproof from any of the facts of nature --and this even supposing that the assumption be false. On the other hand, of course, it equally precludes the possibility of its own proof; and therefore it is as idle in Darwinists to challenge Weismann for proof of his negative , as it is in Weismann to challenge Darwinists for proof of the opposite negative . This dead-lock arises from the fact that in nature it is beyond the power of the followers of Darwin to exclude the abstract possibility of natural selection in any given case, while it is equally beyond the power of the followers of Weismann to exclude the abstract possibility of Lamarckian principles. Therefore at present the question must remain for the most part a matter of opinion, based upon general reasoning as distinguished from special facts or crucial experiments. The evidence available on either side is presumptive, not demonstrative. But it is to be hoped that in the future, when time shall have been allowed for the performance of definite experiments on a number of generations of domesticated plants or animals, intentionally shielded from the influences of natural selection while exposed to those of the Lamarckian principles, results will be gained which will finally settle the question one way or the other.
Note A.
Turning then to the question of fact, with which the following chapters are concerned, I will conclude this preliminary one with a few words on the method of discussion to be adopted.
CHARACTERS AS HEREDITARY AND ACQUIRED .
Starting with the evidence in favour of the so-called Lamarckian factors, we have to begin with the Indirect--and this without any special reference to the theories, either of Weismann or of others.
Let us now turn to another and much more important line of indirect evidence in favour of moderated Lamarckianism.
There is now an extensive literature within this region. The principal writers are Cope, Scott and Osborn. Unfortunately, however, the facts adduced are not crucial as test-cases between the rival theories--nearly all of them, in fact, being equally susceptible of explanation by either.
The evidence in favour of the Lamarckian factors which may be derived from the phenomena of reflex action has never, I believe, been pointed out before; but it appears to me of a more cogent nature than perhaps any other. In order to do it justice, I will begin by re-stating an argument in favour of these factors which has already been adduced by previous writers, and discussed by myself in published correspondence with several leaders of the ultra-Darwinian school.
In alluding to what I have already published upon the difficulty which thus appears to be presented to his theory, Weismann says, "At no distant time I hope to be able to consider this objection, and to show that the apparent support given to the old idea is really insecure, and breaks down as soon as it is critically examined."
So much for what Weismann has said touching this matter. But the matter has also been dealt with both by Darwin and by Wallace. Darwin very properly distinguishes between the fallacy that "with animals such as the giraffe, of which the whole structure is admirably co-ordinated for certain purposes, it has been supposed that all the parts must have been simultaneously modified," and the sound argument that the co-ordination itself cannot have been due to natural selection alone. This important distinction may be rendered more clear as follows.
Or the whole argument may be presented in another form, under three different headings, thus:--
Now, if all these distinctions between the Darwinian and Lamarckian principles are valid--and I cannot see any possibility of doubt upon this point--strong evidence in favour of the latter would be furnished by cases where structures, actions, instincts, &c., although of some adaptive value, are nevertheless plainly not of selective value. According to the ultra-Darwinian theory, no such cases ought ever to occur: according to the theory of Darwin himself, they ought frequently to occur. Therefore a good test, or criterion, as between these different theories of organic evolution is furnished by putting the simple question of fact--Can we, or can we not, show that there are cases of adaptation where the degree of adaptation is so small as to be incompatible with the supposition of its presenting a selective value? And if we put the wider question--Are there any cases where the co-adaptation of severally useless parts has been brought about, when even the resulting whole does not present a selective value?--then, of course, we impose a still more rigid test.
Well, notwithstanding the difficulty of proving such a negative as the absence of natural selection where adaptive development is concerned, I believe that there are cases which conform to both these tests simultaneously; and, moreover, that they are to be found in most abundance where the theory of use-inheritance would most expect them to occur--namely, in the province of reflex action. For the very essence of this theory is the doctrine, that constantly associated use of the same parts for the performance of the same action will progressively organize those parts into a reflex mechanism--no matter how high a degree of co-adaptation may thus be reached on the one hand, or how low a degree of utilitarian value on the other.
Having now stated the general or abstract principles which I regard as constituting a defence of the Lamarckian factors, so far as this admits of being raised on grounds of physiology, we will now consider a few concrete cases by way of illustration. It is needless to multiply such cases for the mere purpose of illustration. For, on reading those here given, every physiologist will at once perceive that they might be added to indefinitely. The point to observe is, the relation in which these samples of reflex action stand to the general principles in question; for there is nothing unusual in the samples themselves. On the contrary, they are chosen because they are fairly typical of the phenomena of reflex action in general.
In our own organization there is a reflex mechanism which ensures the prompt withdrawal of the legs from any source of irritation supplied to the feet. For instance, even after a man has broken his spine in such a manner as totally to interrupt the functional continuity of his spinal cord and brain, the reflex mechanism in question will continue to retract his legs when his feet are stimulated by a touch, a burn, &c. This responsive action is clearly an adaptive action, and, as the man neither feels the stimulation nor the resulting movement, it is as clearly a reflex action. The question now is as to the mode of its origin and development.
On the other hand, of course, the theory of use-inheritance furnishes a fully intelligible--whether or not a true--explanation. For those nerve-centres in the spinal cord which co-ordinate the muscles required for retracting the feet are the centres used by the will for this purpose. And, by hypothesis, the frequent use of them for this purpose under circumstances of stimulation which render the muscular response appropriate, will eventually establish an organic connexion between such response and the kind of stimulation to which it is appropriate--even though there be no utilitarian reason for its establishment. To invert a phrase of Aristotle, we do not frequently use this mechanism because we have it ; but, by hypothesis, we have it because we have frequently used its several elements in appropriate combination.
It may be said, with regard to this particular reflex, that it may perhaps be, so to speak, a mechanical accident, arising from the contiguity of the sensory and motor roots in the cord. But as this suggestion cannot apply to other reflexes presently to be adduced, it need not be considered.
I will adduce but one further example in illustration of these general principles--passing at once from the foregoing case of comparative simplicity to one of extreme complexity.
Of course it will be observed that the question is not with regard to the development of all the nerves and muscles concerned in this particular process. It is as to the development of the co-ordinating centres, which thus so delicately respond to the special stimuli furnished by variations of angle to the horizon. And it is as inconceivable in this case of reflex action, as it is in almost every other case of reflex action, that the highly specialized machinery required for performing the adaptive function can ever have had its origin in the performance of any other function. Indeed, a noticeable peculiarity of reflex mechanisms as a class is the highly specialized character of the functions which their highly organized structures subserve.
We meet with a closely analogous reflex mechanism in brainless vertebrata of other kinds; but these do not furnish such good test cases, because the possibility of natural selection cannot be so efficiently attenuated. The perching of brainless birds, for instance, at once refers us to the roosting of sleeping birds, where the reflex mechanism concerned is clearly of high adaptive value. Therefore such a case is not available as a test, although the probability is that birds have inherited their balancing mechanisms from their sauropsidian ancestors, where it would have been of no such adaptive importance.
And, of course, this example--like that of withdrawing the feet from a source of stimulation, which a frog will do as well as a man--does not stand alone. Without going further a-field than this same animal, any one who reads, from our present point of view, Goltz's work on the reflex actions of the frog, will find that the great majority of them--complex and refined though most of them are--cannot conceivably have ever been of any use to any frog that was in undisturbed possession of its brain.
Many of our domesticated dogs, when we gently scratch their sides and certain other parts of the body, will themselves perform scratching movements with the hind leg of the same side as that upon which the irritation is being supplied. According to Goltz, this action is a true reflex; for he found that it is performed equally well in a dog which has been deprived of its cerebral hemispheres, and therefore of its normal volition. Again, according to Haycraft, this reflex is congenital, or not acquired during the life-time of each individual dog. Now, although the action of scratching is doubtless adaptive, it appears to me incredible that it could ever have become organized into a congenital reflex by natural selection. For, in order that it should, the scratching away fleas would require to have been a function of selective value. Yet, even if the irritation caused by fleas were supposed to be so far fatal in the struggle for existence, it is certain that they would always be scratched away by the conscious intelligence of each individual dog; and, therefore, that no advantage could be gained by organizing the action into a reflex. On the other hand, if acquired characters are ever in any degree transmitted, it is easy to understand how so frequently repeated an action should have become, in numberless generations of dogs, congenitally automatic.
So much for the general principle of selective value as applied to this particular case. And similarly, of course, we might here repeat the application of all the other general principles, which have just been applied in the two preceding cases. But it is only one of these other general principles which I desire in the present case specially to consider, for the purpose of considering more closely than hitherto the difficulty which this principle presents to ultra-Darwinian theory.
The second example of a nascent reflex in dogs which I have to mention is as follows.
Goltz found that his brainless dogs, when wetted with water, would shake themselves as dry as possible, in just the same way as normal dogs will do under similar circumstances. This, of course, proves that the shaking movements may be performed by a reflex mechanism, which can have no other function to perform in the organization of a dog, and which, besides being of a highly elaborate character, will respond only to a very special kind of stimulation. Now, here also I find that the mechanism is congenital, or not acquired by individual experience. For the puppies on which I experimented were kept indoors from the time of their birth--so as never to have had any experience of being wetted by rain, &c.--till they were old enough to run about with a full power of co-ordinating their general movements. If these young animals were suddenly plunged into water, the shock proved too great: they would merely lie and shiver. But if their feet alone were wetted, by being dipped in a basin of water, the puppies would soon afterwards shake their heads in the peculiar manner which is required for shaking water off the ears, and which in adult dogs constitutes the first phase of a general shaking of the whole body.
If instinct be, as Professor Hering, Mr. Samuel Butler, and others have argued, "hereditary habit"--i. e. if it comprises an element of transmitted experience--we at once find a complete explanation of many cases of the display of instinct which otherwise remain inexplicable. For although a large number--or even, as I believe, a large majority--of instincts are explicable by the theory of natural selection alone, or by supposing that they were gradually developed by the survival of fortuitous variations in the way of advantageous psychological peculiarities, this only applies to comparatively simple instincts, such as that of a protectively coloured animal exhibiting a preference for the surroundings which it resembles, or even adopting attitudes in imitation of objects which occur in such surroundings. But in all cases where instincts become complex and refined, we seem almost compelled to accept Darwin's view that their origin is to be sought in consciously intelligent adjustments on the part of ancestors.
Note B.
Again, there are not a few instincts which appear to be wholly useless to their possessors, and others again which appear to be even deleterious. The dusting over of their excrement by certain freely-roaming carnivora; the choice by certain herbivora of particular places on which to void their urine, or in which to die; the howling of wolves at the moon; purring of cats, &c., under pleasurable emotion; and sundry other hereditary actions of the same apparently unmeaning kind, all admit of being readily accounted for as useless habits originally acquired in various ways, and afterwards perpetuated by heredity, because not sufficiently deleterious to have been stamped out by natural selection. But it does not seem possible to explain them by survival of the fittest in the struggle for existence.
Finally, in the case of our own species, it is self-evident that the aesthetic, moral, and religious instincts admit of a natural and easy explanation on the hypothesis of use-inheritance, while such is by no means the case if that hypothesis is rejected. Our emotions of the ludicrous, of the beautiful, and of the sublime, appear to be of the nature of hereditary instincts; and be this as it may, it would further appear that, whatever else they may be, they are certainly not of a life-preserving character. And although this cannot be said of the moral sense when the theory of natural selection is extended from the individual to the tribe, still, when we remember the extraordinary complexity and refinement to which they have attained in civilized man, we may well doubt whether they can have been due to natural selection alone. But space forbids discussion of this large and important question on the present occasion. Suffice it therefore to say, that I doubt not Weismann himself would be the first to allow that his theory of heredity encounters greater difficulties in the domain of ethics than in any other--unless, indeed, it be that of religion.
I have now given a brief sketch of the indirect evidence in favour of the so-called Lamarckian factors, in so far as this appears fairly deducible from the facts of reflex action and of instinct. It will now be my endeavour to present as briefly what has to be said against this evidence.
The answer of Weismann to difficulties which arise against the ultra-Darwinian theory in the domain of instinct, is as follows:--
"The necessity for extreme caution in appealing to the supposed hereditary effects of use, is well shown in the case of those numerous instincts which only come into play once in a life-time, and which do not therefore admit of improvement by practice. The queen-bee takes her nuptial flight only once, and yet how many and complex are the instincts and the reflex mechanisms which come into play on that occasion. Again, in many insects the deposition of eggs occurs but once in a life-time, and yet such insects always fulfil the necessary conditions with unfailing accuracy."
Strong evidence in favour of Weismann's views does, however, at first sight seem to be furnished by social hymenoptera in other respects. For not only does the queen present highly specialized and altogether remarkable instincts; but the neuters present totally different and even still more remarkable instincts--which, moreover, are often divided into two or more classes, corresponding with the different "castes." Yet the neuters, being barren females, never have an opportunity of bequeathing their instincts to progeny. Thus it appears necessary to suppose that the instincts of all the different castes of neuters are latent in the queen and drones, together with the other instincts which are patent in both. Lastly, it seems necessary to suppose that all this wonderful organization of complex and segregated instincts must have been built up by natural selection acting exclusively on the queens and drones--seeing that these exercise their own instincts only once in a life-time, while, as just observed, the neuters cannot possibly bequeath their individual experience to progeny. Obviously, however, natural selection must here be supposed to be operating at an immense disadvantage; for it must have built up the often diverse and always complex instincts of neuters, not directly, but indirectly through the queens and drones, which never manifest any of these instincts themselves.
Nevertheless, although I think that Perrier has made good his position thus far, that his hypothesis fails to account for some of the instincts which are manifested by neuter insects, such as those which, so far as I can see, must necessarily be supposed to have originated after the breeding and working functions had become separated--seeing that they appear to have exclusive reference to this peculiar state of matters. Possibly, however, Perrier might be able to meet each of these particular instincts, by showing how they could have arisen out of simpler beginnings, prior to the separation of the two functions in question. There is no space to consider such possibilities in detail; but, until this shall have been done, I do not think we are entitled to conclude that the phenomena of instinct as presented by neuter insects are demonstrably incompatible with the doctrines of Lamarck--or, that these phenomena are available as a logical proof of the unassisted agency of natural selection in the case of instincts in general.
There is no doubt that Darwin everywhere attaches great weight to this line of evidence. Nevertheless, in my opinion, there is equally little doubt that, taken by itself, it is of immeasurably less weight than Darwin supposed. Indeed, I quite agree with Weismann that the whole of this line of evidence is practically worthless; and for the following reasons.
The evidence on which Darwin relied to prove the inherited effects of use and disuse was derived from his careful measurements of the increase or decrease which certain bones of our domesticated animals have undergone, as compared with the corresponding bones of ancestral stocks in a state of nature. He chose domesticated animals for these investigations, because, while yielding unquestionable cases of increased or diminished use of certain organs over a large number of sequent generations, the results were not complicated by the possible interference of natural selection on the one hand, or by that of the economy of nutrition on the other. For "with highly-fed domesticated animals there seems to be no economy of growth, or any tendency to the elimination of superfluous details;" seeing that, among other considerations pointing in the same direction, "structures which are rudimentary in the parent species, sometimes become partially re-developed in our domesticated productions."
The method of Darwin's researches in this connexion was as follows. Taking, for example, the case of ducks, he carefully weighed and measured the wing-bones and leg-bones of wild and tame ducks; and he found that the wing-bones were smaller, while the leg-bones were larger, in the tame than in the wild specimens. These facts he attributed to many generations of tame ducks using their wings less, and their legs more, than was the case with their wild ancestry. Similarly he compared the leg-bones of wild rabbits with those of tame ones, and so forth--in all cases finding that where domestication had led to increased use of a part, that part was larger than in the wild parent stock; while the reverse was the case with parts less used. Now, although at first sight these facts certainly do seem to yield good evidence of the inherited effects of use and disuse, they are really open to the following very weighty objections.
"A goose or a duck must possess strong powers of flight in the natural state, but such powers are no longer necessary for obtaining food when it is brought into the poultry-yard; so that a rigid selection of individuals with well-developed wings at once ceases among its descendants. Hence, in the course of generations, a deterioration of the organs of flight must necessarily ensue."
Or, to state the case in another way: if any structure which was originally built up by natural selection on account of its use, ceases any longer to be of so much use, in whatever degree it ceases to be of use, in that degree will the premium before set upon it by natural selection be withdrawn. And the consequence of this withdrawal of selection as regards that particular part will be to allow the part to degenerate in successive generations. Such is the principle which Weismann calls Panmixia, because, by the withdrawal of selection from any particular part, promiscuous breeding ensues with regard to that part. And it is easy to see that this principle must be one of very great importance in nature; because it must necessarily come into operation in all cases where any structure or any instinct has, through any change in the environment or in the habits of a species, ceased to be useful. It is likewise easy to see that its effect must be the same as that which was attributed by Darwin to the inherited effect of disuse; and, therefore, that the evidence on which he relied in proof of the inherited effects both of use and of disuse is vitiated by the fact that the idea of Panmixia did not occur to him.
The absence of any good evidence of this direct kind in favour of use-inheritance will be rendered strikingly apparent to any one who reads a learned and interesting work by Professor Semper. His object was to show the large part which he believed to have been played by external conditions of life in directly modifying organic types--or, in other words, of proving that side of Lamarckianism which refers to the immediate action of the environment, whether with or without the co-operation of use-inheritance and natural selection. Although Semper gathered together a great array of facts, the more carefully one reads his book the more apparent does it become that no single one of the facts is in itself conclusive evidence of the transmission to progeny of characters which are acquired through use-inheritance or through direct action of the environment. Every one of the facts is susceptible of explanation on the hypothesis that the principle of natural selection has been the only principle concerned. This, however, it must be observed, is by no means equivalent to proving that characters thus acquired are not transmitted. As already pointed out, it is impracticable with species in a state of nature to dissociate the distinctively Darwinian from the possibly Lamarckian factors; so that even if the latter are largely operative, we can only hope for direct evidence of the fact from direct experiments on varieties in a state of domestication. To this branch of our subject, therefore, we will now proceed.
CHARACTERS AS HEREDITARY AND ACQUIRED .
Notwithstanding the fact already noticed, that no experiments have hitherto been published with reference to the question of the transmission of acquired characters, there are several researches which, with other objects in view, have incidentally yielded seemingly good evidence of such transmission. The best-known of these researches--and therefore the one with which I shall begin--is that of Brown-S?quard touching the effects of certain injuries of the nervous system in guinea-pigs.
During a period of thirty years Brown-S?quard bred many thousands of guinea-pigs as material for his various researches; and in those whose parents had not been operated upon in the ways to be immediately mentioned, he never saw any of the peculiarities which are about to be described. Therefore the hypothesis of coincidence, at all events, must be excluded. The following is his own summary of the results with which we are concerned:--
These results have been independently vouched for by two of Brown-S?quard's former assistants--Dr. Dupuy, and the late Professor Westphal. Moreover, his results with regard to epilepsy have been corroborated also by Obersteiner. I may observe, in passing, that this labour of testing Brown-S?quard's statements is one which, in my opinion, ought rather to have been undertaken, if not by Weismann himself, at all events by some of his followers. Both he and they are incessant in their demand for evidence of the transmission of acquired characters; yet they have virtually ignored the foregoing very remarkable statements. However, be this as it may, all that we have now to do is to consider what the school of Weismann has had to say with regard to these experiments on the grounds of general reasoning which they have thus far been satisfied to occupy.
In view of Obersteiner's corroboration of Brown-S?quard's results touching the artificial production and subsequent transmission of epilepsy, Weismann accepts the facts, but, in order to save his theory of heredity, he argues that the transmission may be due to a traumatic introduction of "some unknown microbe" which causes the epilepsy in the parent, and, by invading the ova or spermatozoa as the case may be, also produces epilepsy in the offspring. Here, of course, there would be transmission of epilepsy, but it would not be, technically speaking, an hereditary transmission. The case would resemble that of syphilis, where the sexual elements remain unaffected as to their congenital endowments, although they have been made the vehicles for conveying an organic poison to the next generation.
"It is obvious that the presence of microbes can have nothing to do with such an attack, but the shock alone must have caused morphological and functional changes in the centre of the pons and medulla oblongata, identical with those produced by microbes in the other cases.... Various stimuli might cause the nervous centres concerned to develop the convulsive attack which, together with its after-effects, we call epilepsy. In Westphal's case, such a stimulus would be given by a powerful mechanical shock ; in Brown-S?quard's experiments, by the penetration of microbes."
Add to tbrJar First Page Next Page Prev Page