bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The American Reformed Cattle Doctor Containing the necessary information for preserving the health and curing the diseases of oxen cows sheep and swine with a great variety of original recipes and valuable information in reference to farm and dairy manage by Dadd George H

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 1464 lines and 128783 words, and 30 pages

"The three and a half feet of space between the troughs and outer wall, lighted by a glazed window, is the cattle feeder's walk, who passes along it in front of the cattle, and, with a basket, deposits before each of the cattle the food into the feeding trough of each. To prevent any of the cattle from choking on small pieces of turnips, &c., as they are very apt to do, the chains at the stakes are contrived of such a length, that no ox can raise his head too high when eating; for in this way, it is observed, cattle are generally choked.

"At the distance of about six feet eight inches from the feeding troughs, and parallel to them, is a dung grove and urine gutter. Here too, like the trough, there is a gradual declivity; so that the moment the urine passes from the cattle, it runs to the lowest end of the gutter, whence it is conveyed through the outer wall, in a spout, and deposited in the urinarium outside of the building. At this place is a large enclosed space, occupied as a compost dung-court. Here all sorts of stuff are collected for increasing the manure, such as fat, earth, cleanings of roads, ditches, ponds, rotten vegetables, &c.; and the urine from the byre, being caused to run over all these collected together, which is done very easily by a couple of wooden spouts, moved backwards and forwards to the urinarium at pleasure, renders the whole mass, in a short time, a rich compost dunghill; and this is done by the urine alone, which, in general, is totally lost. The dung of the byre, again, is cleared several times each day, and deposited in the dung-court. Along the edge of the dung-court a few low sheds are constructed, in which swine are kept, and these consume the refuse of the food.

"In the side wall of the byre, and opposite to the heads of the cattle, are constructed three ventilators; these are placed at the distance of about two feet four inches from the ground, in the inside of the byre, and pass out just under the roof. The inside openings of these are about thirteen inches in length, seven in breadth, and nine in depth; and they serve two good purposes. The breath of cattle being superficially lighter than atmospheric air, the consequence is, that in some byres the cattle are kept in a constant heat and sweat, because their breath and heat have no way to escape; whereas, by means of the ventilators, the air of the barn is kept in proper circulation, which conduces as much to the health of the cattle as to the preservation of the walls and timber of the byre, by drying up the moisture produced from the breath and sweat of the cattle, which is found to injure those parts of the building."

MILKING.

The operation of milking should, if possible, always be performed by the same person, and in the most gentle manner; the violent tugging at the teats by an inexperienced hand is apt to make the animal irritable and uneasy during the operation, and unwilling to be milked. Many of the diseases of the teats and udder can be traced to violence done to the parts under the operation of milking. Young animals are often unwilling to be milked: here a little patience and kindness will perform wonders.

It is not the quantity of milk that gives value to the dairy cow; for the milk of one good cow will make more butter than that of two poor ones, each giving the same quantity of milk. Its most abundant principles are cream, caseous matter or curd, and whey. In these are also contained a saccharine matter, muriate and phosphate of potassa, phosphate of lime, acetic acid, acetate of potassa, and a trace of acetate of iron. The three principal constituents can easily be separated: thus the cream rises to the surface, and the curd and whey will separate if the milk becomes sour, or a little rennet is poured into it. When milk is intended to be made into cheese, no part of the cream should be separated. Good cheese is, consequently, rarely produced in those dairies where much butter is made; the former being robbed for the sake of the latter.

Sir J. Sinclair says, "If a few spoonfuls of milk are left in the udder of the cow at milking; if any of the implements used in the dairy are allowed to be tainted by neglect; if the dairy-house be kept dirty, or out of order; if the milk is either too hot or too cold at coagulation; if too much or too little rennet is put into the milk; if the whey is not speedily taken off; if too much or too little salt is applied; if butter is too slowly or too hastily churned; or if other minute attentions are neglected, the milk will be in a great measure lost. If these nice operations occurred once a month, or once a week, they might be easily guarded against; but as they require to be observed during every stage of the process, and almost every hour of the day, the most vigilant attention must be kept up during the whole season."

A KNOWLEDGE OF AGRICULTURAL AND ANIMAL CHEMISTRY IMPORTANT TO FARMERS.

It is a well-known fact that plants require for their germination and growth different constituents of soil, and that animals require different forms of food to build up the waste, and promote the living integrity--the vital powers.

The alternation of crops seems destined to effect a great change in agriculture. A French chemist informs us that the roots of plants imbibe matter of every kind from the soil, and thus necessarily abstract a number of substances, which are not adapted to the purposes of nutrition, and that they are ultimately expelled by the excretory vessels, and return to the soil as excrement. The excrementitious portion of the food also returns to the soil. Now, as excrement cannot be assimilated by the same animal or plant that ejected it, without danger to the organs of digestion or eliminations, it follows that the more vegetable excrement the soil contains, the more unfitted must it be for plants of the same species; yet these excrementitious matters may, however, still be capable of assimilation by another kind of plant, which would absorb them from the soil, and render it again fertile for the first. In connection with this, it has been observed that several plants will flourish when growing beside each other; but it is not good policy to sow two kinds of seed together: on the other hand, some plants mutually prevent each other's development. The same happens if young cattle are suffered to graze and sleep in the barn together; the one lives at the expense of the other, which soon shows evidences of disease. The injurious effects of permitting young children to sleep with aged relatives are known to many of our readers; yet some parents see their children sicken and die without knowing the why or wherefore. From such facts as these,--which we might multiply to an indefinite extent, were it necessary,--we learn that nature's laws are immutable and uncompromising; and woe be to the man that transgresses them: they are a part of the divine law, which cannot be set at nought with impunity.

Ignorance on these important subjects has existed too long: yet we perceive in the distant horizon a ray of intellectual light, streaming through our schools and agricultural societies. The result will be, that succeeding generations will be better acquainted with nature's laws, from which shall flow untold blessings. Chemistry teaches us that animals and vegetables are composed of a vast number of different compounds, which are nearly all produced by the same elementary principles. Vegetables consist of carbon, hydrogen, and oxygen; and the same substances, with the addition of nitrogen, are the principal constituents of the animal economy. In a word, all the constituents of animal creation have actually been discovered in vegetables: this has, we presume, led to the conclusion that "all flesh is grass."

Agriculture being based on the equilibrium of the soils, a knowledge of chemistry is indispensable to every one who is desirous of keeping pace with the reforms of the age; for it is through the medium of that science alone that we are enabled to ascertain with certainty how this equilibrium is disturbed by the growth of vegetation. Then is it not a matter of deep interest to the farmer to know how this equilibrium is restored?

Ashes of wheat contain, among other elementary substances, 48 parts of silecia. Now, what farmer could expect to raise a good crop of wheat from a soil destitute of silecious earth, since this earth constitutes a large amount of the earthy part of wheat? There is no barrier to agricultural improvement so effectual as for farmers to continue their old customs purely because their forefathers did so. But prejudices are fast dying away before the rays of intellectual illumination; the farmers are fast seceding from the supposed infallibles of their forefathers, and will soon become "book" as well as practical husbandmen. "Book farming," assisted by practical knowledge, teaches that manures require admixture of milder materials to mitigate their force; for some of them communicate a disgusting or offensive quality to vegetables. They are charged with imparting a biting and acrimonious taste to radishes and turnips. Potatoes and grapes are known to borrow the foul taint of the ground. Millers observe a strong, disagreeable odor in the meal of wheat that grew upon land highly charged with the rotten recrements of cities. Stable dung is known to impart a disagreeable flavor to vegetables.

The same effects may be illustrated in the animal kingdom. Ducks are rendered so ill tasted from stuffing down garbage as sometimes to be offensive to the palate when cooked. The quality of pork is known by the food of the swine, and the peculiar flavor of water-fowl is rationally traced to the fish they devour. Thus a portion of the elements of manure and nutrimental matter passes into the living bodies without being entirely subdued. For example, we can alter the color of the cow's milk by mixing madder or saffron in the food; the odor may be influenced by garlic; the flavor may be altered by pine and wormwood; and lastly, the medicinal effect may be influenced.

In the cultivation of grass the farmer will find it to his advantage to cultivate none but the best kinds; the whole pasture lands will then be filled with valuable grass seeds. The number of grass seeds worth cultivating is but few, and these should be sown separately. It is bad policy to sow different kinds of grass seed together--just as bad as to sow wheat, oats, turnips, and corn promiscuously.

The reason why the farmers, as a community, will be benefited by sowing none but the best seed is, because grass seeds are distributed through neighboring pastures by the winds, and there take root. Now, if the neighboring pastures abound in inferior grasses, the fields will soon be filled with useless plants, which are very difficult to be got rid of. We refer those of our readers who desire to make themselves acquainted with animal chemistry to Professor Liebig's work on that science.

ON BREEDING.

Large sums of money have, from time to time, been expended with a view of improving stock, and many superior cattle have been introduced into this country; yet, after a few generations, the beautiful form and superior qualities of the originals are nearly lost, and the importer finds to his cost that the produce is no better than that of his neighbors. What are the causes of this deterioration? We are told--and experience confirms the fact--that "like produces like." Good qualities and perfect organization are perpetuated by a union of animals possessing those properties: of course it follows, that malformation, hereditary taints, and vices are transmitted and aggravated.

The destructive practice of breeding "in and in," or, in other words, selecting animals of the same family, is one of the first causes of degeneracy; and this destructive practice has proved equally unfortunate in the human family. Physical defects are the result of the intermarriage of near relatives. In Spain, the deformed and feeble state of the aristocracy arises from their alliances being confined to the same class of relatives through successive generations. But we need not go to Spain to verify such facts. Go into our churchyards, and read on the tombstones the names of thousands of infants,--gems withered in the bud,--young men, and maidens, cut down and consigned to a premature grave; and then prove, if you can, that early marriages and near alliances are not the chief causes of this great mortality.

"There are, however, several instances of superior animals bred in the closest affinity; whilst, in a very great majority of cases, the failure has been excessive."

There is no doubt but that brutes are often endowed with extraordinary powers for sexual indulgence; yet, when kept for the purpose alluded to, without sufficient muscular exercise,--breathing impure air, and living on the fat of the farm,--his services in constant requisition,--then it is no wonder, that if, under these circumstances, the offspring are weak and inefficient.

Professor Youatt recommends that "valuable qualities once established, which it is desirable to keep up, should thereafter be preserved by occasional crosses with the best animals to be had of the same breed, but of a different family. This is the great secret which has maintained the blood horse in his great superiority."

If the farming community desire to put a stop to this growing evil, let them instruct their representatives to advocate the enactment of a law prohibiting the breeding to bulls or stallions unless they shall possess the necessary qualifications.

THE BULL.

Mr. Lawson gives us the following description of a good bull. It would be difficult to find one corresponding in all its details to this description; yet it will give the reader an idea of what a good bull ought to be. "The head of the bull should be rather long, and muzzle fine; his eyes lively and prominent; his ears long and thin; his horns white; his neck rising with a gentle curve from the shoulders, and small and fine where it joins the head; his shoulders moderately broad at the top, joining full to his chine and chest backwards, and to the neck-vein forwards; his bosom open; breast broad, and projecting well before his legs; his arms or fore thighs muscular, and tapering to his knees; his legs straight, clean, and very fine boned; his chine and chest so full as to leave no hollows behind the shoulders; the plates strong, to keep his belly from sinking below the level of his breast; his back or loin broad, straight, and flat; his ribs rising one above another, in such a manner that the last rib shall be rather the highest, leaving only a small space to the hips, the whole forming a round or barrel-like carcass; his hips should be wide placed, round or globular, and a little higher than the back; the quarters long, and, instead of being square, as recommended by some, they should taper gradually from the hips backwards; rump close to the tail; the tail broad, well haired, and set on so as to be in the same horizontal line with his back."

VALUE OF DIFFERENT BREEDS OF COWS.

Mr. Culley, in speaking of the relative value of long and short horns, says, "The long-horns excel in the thickness and firm texture of the hide, in the length and closeness of the hair, in their beef being finer grained and more mixed and marbled than that of the short-horns, in weighing more in proportion to their size, and in giving richer milk; but they are inferior to the short-horns in giving a less quantity of milk, in weighing less upon the whole, in affording less fat when killed, in being generally slower feeders, in being coarser made, and more leathery or bullish in the under side of the neck. In a few words, the long-horns excel in hide, hair, and quality of beef; the short-horns in the quantity of beef, fat, and milk. Each breed has long had, and probably may have, their particular advocates; but if I may hazard a conjecture, is it not probable that both kinds may have their particular advantages in different situations? Why not the thick, firm hides, and long, closer set hair, of the one kind be a protection and security against tempestuous winds and heavy fogs and rains, while a regular season and mild climate are more suitable to the constitutions of the short-horns? But it has hitherto been the misfortune of the short-horned breeders to seek the largest and biggest boned ones for the best, without considering that those are the best that bring the most money for a given quantity of food. However, the ideas of our short-horned breeders being now more enlarged, and their minds more open to conviction, we may hope in a few years to see great improvements made in that breed of cattle.

"I would recommend to breeders of cattle to find out which breed is the most profitable, and which are best adapted to the different situations, and endeavor to improve that breed to the utmost, rather than try to unite the particular qualities of two or more distinct breeds by crossing, which is a precarious practice, for we generally find the produce inherit the coarseness of both breeds, and rarely attain the good properties which the pure distinct breeds individually possess.

"Short-horned cows yield much milk; the long-horned give less, but the cream is more abundant and richer. The same quantity of milk also yields a greater proportion of cheese. The Polled or Galloway cows are excellent milkers, and their milk is rich. The Suffolk duns are much esteemed for the abundance of their milk, and the excellence of the butter it produces. Ayrshire or Kyloe cows are much esteemed in Scotland; and in England the improved breed of the long-horned cattle is highly prized in many dairy districts. Every judicious selector, however, will always, in making his choice, keep in view not only the different sons and individuals of the animal, but also the nature of the farm on which the cows are to be put, and the sort of manufactured produce he is anxious to bring to market. The best age for a milch cow is betwixt four, or five, and ten. When old, she will give more milk; but it is of an inferior quality, and she is less easily supported."

METHOD OF PREPARING RENNET, AS PRACTISED IN ENGLAND.

Take the calf's maw, or stomach, and having taken out the curd contained therein, wash it clean, and salt it thoroughly, inside and out, leaving a white coat of salt over every part of it. Put it into an earthen jar, or other vessel, and let it stand three or four days; in which time it will have formed the salt and its own natural juice into a pickle. Take it out of the jar, and hang it up for two or three days, to let the pickle drain from it; resalt it; place it again in the jar; cover it tight down with a paper, pierced with a large pin; and let it remain thus till it is wanted for use. In this state it ought to be kept twelve months; it may, however, in case of necessity, be used a few days after it has received the second salting; but it will not be as strong as if kept a longer time. To prepare the rennet for use, take a handful of the leaves of the sweet-brier, the same quantity of rose and bramble leaves; boil them in a gallon of water, with three or four handfuls of salt, about a quarter of an hour; strain off the liquor, and, having let it stand until perfectly cool, put it into an earthen vessel, and add to it the maw prepared as above. To this add a sound, good lemon, stuck round with about a quarter of an ounce of cloves, which give the rennet an agreeable flavor. The longer the bag remains in the liquor, the stronger, of course, will be the rennet. The amount, therefore, requisite to turn a given quantity of milk, can only be ascertained by daily use and observation. A sort of average may be something less than a half pint of good rennet to fifty gallons of milk. In Gloucestershire, they employ one third of a pint to coagulate the above quantity.

MAKING CHEESE.

IT is generally admitted that many dairy farmers pay more attention to the quantity than the quality of this article of food; now, as cheese is "a surly elf, digesting every thing but itself," it is surely a matter of great importance that they should attend more to the quality, especially if it be intended for exportation. There is no doubt but the home consumption of good cheese would soon materially increase, for many thousands of our citizens refuse to eat of the miserable stuff "misnamed cheese."

The English have long been celebrated for the superior quality of their cheese; and we have thought that we cannot do a better service to our dairy farmers than to give, in as few words as possible, the various methods of making the different kinds of cheese, for which we are indebted to Mr. Lawson's work on cattle.

"It is to be observed, in general, that cheese varies in quality, according as it has been made of milk of one meal, or two meals, or of skimmed milk; and that the season of the year, the method of milking, the preparation of the rennet, the mode of coagulation, the breaking and gathering of the curd, the management of the cheese in the press, the method of salting, and the management of the cheese-room, are all objects of the highest importance to the cheese manufacturer; and yet, notwithstanding this, the practice, in most of these respects, is still regulated by little else than mere chance or custom, without the direction of enlightened observation or the aid of well-conducted experiment.

GLOUCESTER CHEESE.

"The true single Gloucester cheese is thought by many to be the best, in point of flavor, of any we have. The season for making their thin or single cheese is mostly from April to November; but the principal season for the thick or double is confined to May, June, and the early part of July. This is a busy season in the dairy; for at an earlier period the milk is not rich enough, and if the cheese be made later in the summer, they do not acquire sufficient age to be marketable next spring. Very many cheeses, however, can be made even in winter from cows that are well fed. The cows are milked in summer at a very early hour; generally by four o'clock in the morning, before the day becomes hot, and the animals restless and unruly.

CHESTER CHEESE.

"After the milk has been strained, to free it from any impurities, it is conveyed into a cooler placed upon feet like a table, having a spigot at the bottom for drawing off the milk. This, when sufficiently cooled, is drawn off into pans, and the cooler again filled. In so cases, the cooler is large enough to hold a whole meal's milk at once. The rapid cooling thus produced is found to be of essential utility in retarding the process of fermentation, and thereby preventing putridity from commencing in the milk before two meals of it can be put together. Some have thought that the cheese might be improved by cooling the evening's milk still more rapidly, and that this might be effected by repeatedly drawing it off from and returning it into the cistern. When the milk is too cold, a portion of it is warmed over the fire and mixed with the rest.

"The coloring matter, in Cheshire, is added by tying up as much of the substance as is thought sufficient in a linen rag, and putting it into a half pint of warm water, to stand over night. The whole of this infusion is, in the morning, mixed with the milk in the cheese-tub, and the rag dipped in the milk and rubbed on the palm of the hand as long as any of the coloring matter can be made to come away.

"When, after salting and drying, the cheeses are deposited in the cheese-room or store-house, they are smeared all over with fresh butter, and placed on shelves fitted to the purpose, or on the floor. During the first ten or fifteen days, smart rubbing is daily employed, and the smearing with butter repeated. As long, however, as they are kept, they should be every day turned; and the usual practice is to rub them three times a week in summer and twice in winter.

STILTON CHEESE.

"Stilton cheese is made by putting the night's cream into the morning's new milk along with the rennet. When the curd has come, it is not broken, as in making other cheese, but taken out whole, and put into a sieve to drain gradually. While this is going on, it is gently pressed, and, having become firm and dry, is put into a vat, and kept on a dry board. These cheeses are exceedingly rich and valuable. They are called the Parmesan of England, and weigh from ten to twelve pounds. The manufacture of them is confined almost exclusively to Leicestershire, though not entirely so.

DUNLOP CHEESE.

GREEN CHEESE.

Mr. Colman says, "In conversation with one of the largest wholesale cheesemongers and provision-dealers in the country, he suggested that there were two great faults of the American cheese, which somewhat prejudiced its sale in the English market. He is a person in whose character and experience entire confidence may be placed.

"The first fault was the softness of the rind. It often cracked, and the cheese became spoiled from that circumstance.

"The second fault is the acridness, or peculiar, smart, bitter taste often found in American cheese. He thought this might be due, in part, to some improper preparation or use of the rennet, and, in part, to some kind of feed which the cows found in the pastures.

"The rind may be made of any desired hardness, if the cheese be taken from the press, and allowed to remain in brine, so strong that it will take up no more salt, for four or five hours. There must be great care, however, not to keep it too long in the brine.

"The calf from which the rennet is to be taken should not be allowed to suck on the day on which it is killed. The office of the rennet, or stomach of the calf, is, to supply the gastric juice by which the curdling of the milk is effected. If it has recently performed that office, it will have become, to a degree, exhausted of its strength. Too much rennet should not be applied. Dairymaids, in general, are anxious to have the curd 'come soon,' and so apply an excessive quantity, to which he thinks much of the acrid taste of the cheese is owing. Only so much should be used as will produce the effect in about fifty minutes. For the reason above given, the rennet should not, he says, be washed in water when taken from the calf, as it exhausts its strength, but be simply salted.

"When any cream is taken from the milk to be made into butter, the buttermilk should be returned to the milk of which the cheese is to be made. The greatest care should be taken in separating the whey from the cheese. When the pressing or handling is too severe, the whey that runs from the curd will appear of a white color. This is owing to its carrying off with it the small creamy particles of the cheese, which are, in fact, the richest part of it. After the curd is cut or broken, therefore, and not squeezed with the hand, and all the whey is allowed to separate from it that can be easily removed, the curd should be taken out of the tub with the greatest care, and laid upon a coarse cloth attached to a frame like a sieve, and there suffered to drain until it becomes quite dry and mealy, before being put into the press. The object of pressing should be, not to express the whey, but to consolidate the cheese. There should be no aim to make whey butter. All the butter extracted from the whey is so much of the proper richness taken from the cheese."

Add to tbrJar First Page Next Page Prev Page

 

Back to top