Read Ebook: The Spell of Belgium by Anderson Isabel
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 125 lines and 22440 words, and 3 pages
Pascal's Treatise on the weight of the whole mass of air forms the basis of the modern science of Pneumatics. In order to prove that the mass of air presses by its weight on all the bodies which it surrounds, and also that it is elastic and compressible, he carried a balloon, half filled with air, to the top of the Puy de Dome, a mountain about 500 toises above Clermont, in Auvergne. It gradually inflated itself as it ascended, and when it reached the summit, it was quite full, and swollen as if fresh air had been blown into it; or, what is the same thing, it swelled in proportion as the weight of the column of air which pressed upon it was diminished. When again brought down, it became more and more flaccid, and when it reached the bottom, it resumed its original condition. In the nine chapters of which the Treatise consists, Pascal shows that all the phenomena and effects hitherto ascribed to the horror of a vacuum arise from the weight of the mass of air; and after explaining the variable pressure of the atmosphere in different localities, and in its different states, and the rise of water in pumps, he calculates that the whole mass of air round our globe weighs 8,983,889,440,000,000,000 French pounds.
THE LEANING TOWER OF PISA.
Sir John Leslie used to attribute the stability of this tower to the cohesion of the mortar it is built with being sufficient to maintain it erect, in spite of its being out of the condition required by physics--to wit, that "in order that a column shall stand, a perpendicular let fall from the centre of gravity must fall within the base." Sir John describes the column of Pisa to be in violation of this principle; but, according to designs shown to Dr. Cumming, at Pisa, in 1836, the perpendicular does fall within the base.
Footnote 2:
When at Pisa, many years since, Captain Basil Hall investigated the origin and divergence of the tower from the perpendicular, and established completely to his own satisfaction that it had been built from top to bottom, originally, just as it now stands. His reasons for thinking so are, that the line of the tower, on that side towards which it leans, has not the same curvature as the line on the opposite, or what may be called the upper side. If the tower had been built upright, and then been made to incline over, the line of the wall on that side towards which the inclination was given, would be more or less concave in that direction, owing to the nodding or "swagging over" of the top, by the simple action of gravity acting on a very tall mass of masonry, which is more or less elastic when placed in a sloping position. But the contrary is the fact; for the line of wall on the side towards which the tower leans, is decidedly more convex than the opposite side. Captain Hall has, therefore, no doubt whatever that the architect, in rearing his successive courses of stones, gained or stole a little at each layer, so as to render his work less and less overhanging as he went up; and thus, without betraying what he was about, really gained stability.
HOLDING A "CRAWS' COURT."
ALPINE PERILS.
Strange incidents befel Professor Forbes, and his companions, in their travels through the Alps of Savoy. On one occasion, they got so near a thundercloud, as to be highly electrified by induction, with all the angular stones round them hissing like points near a powerful electrical machine; on another, whilst crossing one of the loftiest passes, the Col de Collon, they discovered a dark object lying on the snow, which proved to be the body of a man, with the clothes hard-frozen and uninjured. "The effect on us all," says the Professor, "was electric; and had not the sun shone forth in its full glory, and the very wilderness of eternal snow seemed gladdened under the serenity of such a summer's day, as is rare at these heights, we should certainly have felt a deeper thrill, arising from the sense of personal danger. As it was, when we had recovered our first surprise, and interchanged our expression of sympathy for the poor traveller, and gazed with awe on the disfigured relics of one who had so lately been in the same plight with ourselves, we turned and surveyed, with a stronger sense of sublimity than before, the desolation by which we were surrounded; and became still more sensible of our isolation from human dwellings, human help, and human sympathy, our loneliness with nature, and as it were, the more immediate presence of God."
PHILOSOPHICAL ENTHUSIASM.
"SHEPHERD TO THE KING OF ENGLAND FOR SCOTLAND."
TRAVELS OF VOLCANIC DUST.
On the 2nd of September, 1845, a quantity of volcanic dust fell in the Orkney Islands, which was supposed to have originated in an eruption of Hecla in Iceland. It was subsequently ascertained that an eruption of Hecla took place on the morning of the above-named day, so as to leave no doubt of the justness of the conclusion. The dust had thus travelled about 600 miles!
EARLY LIFE OF ALEXANDER BRONGNIART.
SMEATON'S REPROOF OF GAMING.
INVENTION OF GUN-COTTON.
Cotton, having largely contributed to our national prosperity in times of peace, promised, not long since, to play a very important part in the strategies of war; and this by its use in place of gunpowder; wherefore the new substance was termed "Gun-cotton."
The merit of the invention is believed to be due to Professor Schonbein, of Basle. In 1840, the novelty was first announced as an explosive compound, possessing many apparent advantages over gunpowder. It was described as a cotton prepared by a secret process; which, on the application of a spark, became at once converted into a gaseous state. In an experiment performed in the laboratory of Professor Schonbein, a certain weight of gunpowder, when fired, filled the apartment with smoke; whilst an equal weight of gun-cotton exploded without producing any smoke, leaving only a few atoms of carbonaceous matter behind. Cannon-balls and shells were then experimentally projected by this prepared cotton, with nearly double the projectile force of gunpowder.
Professor Schonbein made an interesting experiment upon the wall of an old castle: it had been calculated that from three to four pounds of gunpowder would be requisite to destroy this wall, and a hole capable of containing that quantity was prepared. In this aperture were put four ounces of the prepared cotton, which, when fired, blew the massive wall to pieces.
Again, the sixteenth part of an ounce of the prepared cotton, placed in a gun, carried a ball with such force, that it perforated two planks at the distance of twenty-eight paces; and, at another time, with the same charge, drove a bullet into a wall, to the depth of three inches and three-quarters.
SIR JOSEPH BANKS'S "BALANCE."
At the death of Sir Joseph Banks, there was left at the apartments of the Royal Society, at Somerset House, a very delicate balance, constructed by Ramsden, the property of Sir Joseph. The secretaries accordingly wrote to his widow, requesting to know her wishes respecting the instrument. "Pay it into Coutts's," was her ladyship's reply.
BUCKINGHAM PALACE GATES.
The central gates of the marble arch, facing Buckingham Palace, were put up in the summer of 1837: they were designed and cast by Samuel Parker, then of Argyll-place--they are the largest and most superb in Europe, not excepting the gates of the Ducal Palace at Venice, or of the Louvre at Paris. Their material is a beautiful alloy, the base of which is refined copper. Although cast, their enriched foliage and scroll-work bear the elaborate finish of the finest chasing: the height of each gate is twenty-five feet; width, seventeen feet, six inches; extreme thickness, three inches; weight of each, two tons, thirteen cwt.; yet, they are so beautifully hung, that a child might open and shut them. They now terminate at the springing of the arch; but Mr. Parker had cast for the heading a chaste frieze, and a design of the royal arms in the central circle, flanked by state crowns: this portion was, however, irretrievably mutilated by the Government removing the gates from the foundry in a common stage-waggon, without due care to prevent their breakage; yet the work cost, altogether, 3000 guineas!
EARTHQUAKES IN CHILE.
CUVIER IN LONDON.
When Cuvier visited England, in 1818, in conversing with the Prince Regent on the subject of our Natural History Collections, he suggested the union of all the private collections in one great national museum, which, from the extent of our colonial possessions, he conceived would surpass every other collection in Europe.
During the great naturalist's stay in London, he was gratified with the sight of a Westminster election, in which he saw the practical working of one of our most important political institutions. "At this period," says his biographer, Mrs. Lee, "the election for Westminster was going forward, and he frequently dwelt upon the amusement he had received from being on the hustings every day. These orgies of liberty were then unknown in France; and it was a curious spectacle for a man who reflected so deeply on everything which passed before him, to see and hear our orators crying out at the top of their voices to the mob, who pelted them with mud, cabbages, eggs, &c. &c.; and Sir Murray Maxwell, in his splendid uniform, and decorated with orders, flattering the crowd who resisted him, and sent at his head all the varieties of the vegetable kingdom. Nothing ever effaced this impression from Cuvier's memory, who frequently described the scene with great animation."
THE FIRST CUP OF TEA DRUNK IN ENGLAND.
In all probability, the first cup of Tea made in England was drunk upon the site of Buckingham Palace, St. James's Park; for the Earl of Arlington took the first pound of tea to England, having bought it in Holland for sixty shillings; and at this time the Earl resided at Arlington House, which was taken down to make room for Buckingham House, since altered to the Queen's Palace.
Footnote 3:
THE WORLD IN A DROP OF WATER.
The microscope has shown that a drop of water though it may appear to the naked eye to be perfectly clear, is swarming with living beings. According to Ehrenberg, a cubic inch of water may contain more than 800,000 millions of these beings, estimating them only to occupy one fourth of its space; and a single drop, placed under the microscope, will be seen to hold 500 millions; an amount, perhaps, not so very far from equal to the whole number of human beings on the surface of our globe!
ORIGIN OF POST-PAID ENVELOPES.
CHARACTER IN WORKS.
Telford, the engineer, relates that he came to London in 1782, and got employed at the quadrangle of Somerset house-buildings; he soon became known to Sir William Chambers and Mr. R. Adam, the two most distinguished architects of that day; the former haughty and reserved, the latter affable and communicative; and a similar distinction of character pervades their works, Sir William's being stiff and formal, and those of Mr. Adam, playful and gay.
BRINDLEY, THE ENGINEER.
REASON FOR SILENCE.
Some one asked Fontaine, the celebrated geometrician, what he did in society where he remained almost perfectly silent. "I study," replied he, "the vanity of men, in order to mortify it occasionally."
ASCENT OF THE JUNGFRAU ALP.
In 1841, Professor Forbes, along with M. Agassiz, and others, made a successful ascent of the great Swiss mountain, the Jungfrau, whose summit is 13,720 feet above the level of the sea.
Of six travellers and seven guides who formed the party, four of each reached the top--viz., of the former, MM. Forbes, Agassiz, Desor, and Duchatelies; of the latter, Jacob Leutvold Johan Jannon, Melchior, Baucholzer, and Andreas Aplanalp. They left the Grimsel on the morning of the 27th of August, 1841, ascended the whole height of the Ober-Aar Glacier, and descended the greater part of that of Viesch. Crossing a col to the right, they slept at the chalet of Aletsch, near the lake of that name. This was twelve hours' hard walking, the descent of the glaciers being difficult and fatiguing. Next day, the party started at six a.m., having been unable sooner to procure a ladder, to cross the crevices; they then traversed the upper part of the glacier of Aletsch in its whole extent for four hours and a half, until the ascent of the Jungfrau began.
The party crossed with great caution extensive and steep fields of fresh snow, concealing crevices, till they came to one which opened vertically, and behind which rose an excessively steep wall of hardened snow. Having crossed the crevices with the ladder, they ascended the snow without much danger, owing to its consistency. After some similar walking they gained the col, which separates the Aletsch Glacier from the Rothal, on the side of Lauterbrunnen, by which the ascent has usually been attempted. Thus, the travellers, although now at a height of between 12,000 and 13,000 feet, had by far the hardest and most perilous part of the ascent to accomplish. The whole upper part of the mountain presented a steep, inclined surface of what at first seemed snow, but which soon appeared to be hard ice. This slope was not less than 800 or 900 feet in perpendicular height, and its surface in many places rose at 45 degrees, and in few much less; and all Alpine travellers know well what an inclined surface of 45 degrees is to walk up. Of course, every step taken was cut with the hatchet, whilst the slope terminated below, on both sides in precipices some thousand feet high. After very severe exertion, they reached the top of this great mountain, at four p.m. The summit was so small that but one person could stand upon it at once, and that not until the snow had been flattened. The party returned as they came up, step by step, and backwards, and arrived at the chalets of Aletsch, and by beautiful moonlight, at half-past eleven at night.
THE STEAM-GUN IN THE FIFTEENTH CENTURY.
Invention of Archimedes. The architonnere is a machine of fine copper, which throws balls with a loud report and great force. It is used in the following manner:--One-third of the instrument contains a large quantity of charcoal fire. When the water is well heated, a screw at the top of the vessel which contains the water must be made quite tight. On closing the screw above, all the water will escape below, will descend into the heated portion of the instrument, and be immediately converted into a vapour so abundant and powerful, that it is wonderful to see its force, and hear the noise it produces. This machine will carry a ball a talent in weight."
It is worthy of remark that Leonardo da Vinci, far from claiming the merit of this invention for himself or the men of his time, attributes it to Archimedes. The Steam Gun of our time has been an exhibition-room wonder; and the prediction of the Duke of Wellington that it would fail in warfare, has never been, and is never likely to be, tested.
ANCIENT OBSERVATORY IN PERSIA.
When Sir John Malcolm visited Maraga, he traced distinctly the foundations of the Observatory, constructed in the 13th century, for Naser-ood-Deen, the favourite philosopher of the Tartar prince, Hoolakoo, the grandson of Ghenghiz, who, in this locality relaxed from his warlike toils, and assembled round him men of the first genius of the age, who have commemorated his love of science, and given him more fame as its munificent patron, than he acquired by all his conquests.
In this observatory there was, according to one of the best Mahomedan works, a species of apparatus to represent the celestial sphere, with the signs of the zodiac, the conjunctions, transits, and revolutions of the heavenly bodies. Through a perforation in the dome, the rays of the sun were admitted, so as to strike upon certain lines on the pavement in a way to indicate, in degrees and minutes, the altitude and declination of that luminary during every season, and to mark the time and hour of the day throughout the year. The Observatory was further supplied with a map of the terrestrial globe, in all its climates or zones, exhibiting the several regions of the habitable world, as well as a general outline of the ocean, with the numerous islands contained in its bosom; and, according to the Mahomedan author, all these were so perspicuously arranged and delineated, as at once to remove, by the clearest demonstration, every doubt from the mind of the student.
LONDON AS A PORT.
FOURDRINIER'S PAPER-MAKING MACHINERY.
There has been made by this machinery at Colinton mills, a single sheet of paper weighing 533 lbs., and measuring upwards of a mile and a half in length, the breadth being only 50 inches. Were a ream of paper of similar sheets made, it would weigh 266,500lbs. or upwards of 123 tons.
Add to tbrJar First Page Next Page Prev Page