bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The Life of Galileo Galilei with Illustrations of the Advancement of Experimental Philosophy Life of Kepler by Bethune John Elliot Drinkwater

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 609 lines and 130824 words, and 13 pages

Transcriber's Note.

Variable spelling and hyphenation have been retained. Minor punctuation inconsistencies have been silently repaired. The author's corrections, additions and comments have been applied in the text. Changes made by the transcriber can be found at the end of the book. The original text is printed in a two-column layout. Formatting and special characters are indicated as follows:

LONDON.

LIFE OF GALILEO:

Perhaps to this imperfection of method it may be attributed that natural philosophy continued to be stationary, or even to decline, during a long series of ages, until little more than two centuries ago. Within this comparatively short period it has rapidly reached a degree of perfection so different from its former degraded state, that we can hardly institute any comparison between the two. Before that epoch, a few insulated facts, such as might first happen to be noticed, often inaccurately observed and always too hastily generalized, were found sufficient to excite the naturalist's lively imagination; and having once pleased his fancy with the supposed fitness of his artificial scheme, his perverted ingenuity was thenceforward employed in forcing the observed phenomena into an imaginary agreement with the result of his theory; instead of taking the more rational, and it should seem, the more obvious, method of correcting the theory by the result of his observations, and considering the one merely as the general and abbreviated expression of the other. But natural phenomena were not then valued on their own account, and for the proofs which they afford of a vast and beneficent design in the structure of the universe, so much as for the fertile topics which the favourite mode of viewing the subject supplied to the spirit of scholastic disputation: and it is a humiliating reflection that mankind never reasoned so ill as when they most professed to cultivate the art of reasoning. However specious the objects, and alluring the announcements of this art, the then prevailing manner of studying it curbed and corrupted all that is free and noble in the human mind. Innumerable fallacies lurked every where among the most generally received opinions, and crowds of dogmatic and self-sufficient pedants fully justified the lively definition, that "logic is the art of talking unintelligibly on things of which we are ignorant."

It is common, especially in this country, to name Bacon as the founder of the present school of experimental philosophy; we speak of the Baconian or inductive method of reasoning as synonimous and convertible terms, and we are apt to overlook what Galileo had already done before Bacon's writings appeared. Certainly the Italian did not range over the circle of the sciences with the supreme and searching glance of the English philosopher, but we find in every part of his writings philosophical maxims which do not lose by comparison with those of Bacon; and Galileo deserves the additional praise, that he himself gave to the world a splendid practical illustration of the value of the principles which he constantly recommended. In support of this view of the comparative deserts of these two celebrated men, we are able to adduce the authority of Hume, who will be readily admitted as a competent judge of philosophical merit, where his prejudices cannot bias his decision. Discussing the character of Bacon, he says, "If we consider the variety of talents displayed by this man, as a public speaker, a man of business, a wit, a courtier, a companion, an author, a philosopher, he is justly the object of great admiration. If we consider him merely as an author and philosopher, the light in which we view him at present, though very estimable, he was yet inferior to his contemporary Galileo, perhaps even to Kepler. Bacon pointed out at a distance the road to true philosophy: Galileo both pointed it out to others, and made himself considerable advances in it. The Englishman was ignorant of geometry: the Florentine revived that science, excelled in it, and was the first that applied it, together with experiment, to natural philosophy. The former rejected with the most positive disdain the system of Copernicus: the latter fortified it with new proofs derived both from reason and the senses."

If we compare them from another point of view, not so much in respect of their intrinsic merit, as of the influence which each exercised on the philosophy of his age, Galileo's superior talent or better fortune, in arresting the attention of his contemporaries, seems indisputable. The fate of the two writers is directly opposed the one to the other; Bacon's works seem to be most studied and appreciated when his readers have come to their perusal, imbued with knowledge and a philosophical spirit, which, however, they have attained independently of his assistance. The proud appeal to posterity which he uttered in his will, "For my name and memory, I leave it to men's charitable speeches, and to foreign nations, and the next ages," of itself indicates a consciousness of the fact that his contemporary countrymen were but slightly affected by his philosophical precepts. But Galileo's personal exertions changed the general character of philosophy in Italy: at the time of his death, his immediate pupils had obtained possession of the most celebrated universities, and were busily engaged in practising and enforcing the lessons which he had taught them; nor was it then easy to find there a single student of natural philosophy who did not readily ascribe the formation of his principles to the direct or remote influence of Galileo's example. Unlike Bacon's, his reputation, and the value of his writings, were higher among his contemporaries than they have since become. This judgment perhaps awards the highest intellectual prize to him whose disregarded services rise in estimation with the advance of knowledge; but the praise due to superior usefulness belongs to him who succeeded in training round him a school of imitators, and thereby enabled his imitators to surpass himself.

FOOTNOTES:

M?nage.

Power's Experimental Philosophy, 1663.

GALILEO GALILEI was born at Pisa, on the 15th day of February, 1564, of a noble and ancient Florentine family, which, in the middle of the fourteenth century, adopted this surname instead of Bonajuti, under which several of their ancestors filled distinguished offices in the Florentine state. Some misapprehension has occasionally existed, in consequence of the identity of his proper name with that of his family; his most correct appellation would perhaps be Galileo de' Galilei, but the surname usually occurs as we have written it. He is most commonly spoken of by his Christian name, agreeably to the Italian custom; just as Sanzio, Buonarotti, Sarpi, Reni, Vecelli, are universally known by their Christian names of Raphael, Michel Angelo, Fra Paolo, Guido, and Titian.

Several authors have followed Rossi in styling Galileo illegitimate, but without having any probable grounds even when they wrote, and the assertion has since been completely disproved by an inspection of the registers at Pisa and Florence, in which are preserved the dates of his birth, and of his mother's marriage, eighteen months previous to it.

Galileo exhibited early symptoms of an active and intelligent mind, and distinguished himself in his childhood by his skill in the construction of ingenious toys and models of machinery, supplying the deficiencies of his information from the resources of his own invention; and he conciliated the universal good-will of his companions by the ready good nature with which he employed himself in their service and for their amusement. It is worthy of observation, that the boyhood of his great follower Newton, whose genius in many respects so closely resembled his own, was marked by a similar talent. Galileo's father was not opulent, as has been already stated: he was burdened with a large family, and was unable to provide expensive instructors for his son; but Galileo's own energetic industry rapidly supplied the want of better opportunities; and he acquired, under considerable disadvantages, the ordinary rudiments of a classical education, and a competent knowledge of the other branches of literature which were then usually studied. His leisure hours were applied to music and drawing; for the former accomplishment he inherited his father's talent, being an excellent performer on several instruments, especially on the lute; this continued to be a favourite recreation during the whole of his life. He was also passionately fond of painting, and at one time he wished to make it his profession: and his skill and judgment of pictures were highly esteemed by the most eminent contemporary artists, who did not scruple to own publicly their deference to young Galileo's criticism.

When he had reached his nineteenth year, his father, becoming daily more sensible of his superior genius, determined, although at a great personal sacrifice, to give him the advantages of an university education. Accordingly, in 1581, he commenced his academical studies in the university of his native town, Pisa, his father at this time intending that he should adopt the profession of medicine. In the matriculation lists at Pisa, he is styled Galileo, the son of Vincenzo Galilei, a Florentine, Scholar in Arts. His instructor was the celebrated botanist, Andreas Caesalpinus, who was professor of medicine at Pisa from 1567 to 1592. Hist. Acad. Pisan.; Pisis, 1791. It is dated 5th November, 1581. Viviani, his pupil, friend, and panegyrist, declares that, almost from the first day of his being enrolled on the lists of the academy, he was noticed for the reluctance with which he listened to the dogmas of the Aristotelian philosophy, then universally taught; and he soon became obnoxious to the professors from the boldness with which he promulgated what they styled his philosophical paradoxes. His early habits of free inquiry were irreconcileable with the mental quietude of his instructors, whose philosophic doubts, when they ventured to entertain any, were speedily lulled by a quotation from Aristotle. Galileo thought himself capable of giving the world an example of a sounder and more original mode of thinking; he felt himself destined to be the founder of a new school of rational and experimental philosophy. Of this we are now securely enjoying the benefits; and it is difficult at this time fully to appreciate the obstacles which then presented themselves to free inquiry: but we shall see, in the course of this narrative, how arduous their struggle was who happily effected this important revolution. The vindictive rancour with which the partisans of the old philosophy never ceased to assail Galileo is of itself a sufficient proof of the prominent station which he occupied in the contest.

Galileo's earliest mechanical discovery, to the superficial observer apparently an unimportant one, occurred during the period of his studies at Pisa. His attention was one day arrested by the vibrations of a lamp swinging from the roof of the cathedral, which, whether great or small, seemed to recur at equal intervals. The instruments then employed for measuring time were very imperfect: Galileo attempted to bring his observation to the test before quitting the church, by comparing the vibrations with the beatings of his own pulse, and his mind being then principally employed upon his intended profession, it occurred to him, when he had further satisfied himself of their regularity by repeated and varied experiments, that the process he at first adopted might be reversed, and that an instrument on this principle might be usefully employed in ascertaining the rate of the pulse, and its variation from day to day. He immediately carried the idea into execution, and it was for this sole and limited purpose that the first pendulum was constructed. Viviani tells us, that the value of the invention was rapidly appreciated by the physicians of the day, and was in common use in 1654, when he wrote.

At the time of which we are speaking, Galileo was entirely ignorant of mathematics, the study of which was then at a low ebb, not only in Italy, but in every part of Europe. Commandine had recently revived a taste for the writings of Euclid and Archimedes, and Vieta Tartalea and others had made considerable progress in algebra, Guido Ubaldi and Benedetti had done something towards establishing the principles of statics, which was the only part of mechanics as yet cultivated; but with these inconsiderable exceptions the application of mathematics to the phenomena of nature was scarcely thought of. Galileo's first inducement to acquire a knowledge of geometry arose from his partiality for drawing and music, and from the wish to understand their principles and theory. His father, fearful lest he should relax his medical studies, refused openly to encourage him in this new pursuit; but he connived at the instruction which his son now began to receive in the writings of Euclid, from the tuition of an intimate friend, named Ostilio Ricci, who was one of the professors in the university. Galileo's whole attention was soon directed to the enjoyment of the new sensations thus communicated to him, insomuch that Vincenzo, finding his prognostics verified, began to repent his indirect sanction, and privately requested Ricci to invent some excuse for discontinuing his lessons. But it was fortunately too late; the impression was made and could not be effaced; from that time Hippocrates and Galen lay unheeded before the young physician, and served only to conceal from his father's sight the mathematical volumes on which the whole of his time was really employed. His progress soon revealed the true nature of his pursuits: Vincenzo yielded to the irresistible predilection of his son's mind, and no longer attempted to turn him from the speculations to which his whole existence was thenceforward abandoned.

FOOTNOTES:

Erythraeus, Pinacotheca, vol. i.; Salusbury's Life of Galileo. Nelli, Vita di Gal. Galilei.

De his quae diu vivunt. Patavii, 1612.

Comment, in Avicennam. Venetiis, 1625.

Essai sur les Ouvrages de Leonard da Vinci. Paris, 1797.

See Treatise on HYDROSTATICS.

NO sooner was Galileo settled in his new office than he renewed his inquiries into the phenomena of nature with increased diligence. He instituted a course of experiments for the purpose of putting to the test the mechanical doctrines of Aristotle, most of which he found unsupported even by the pretence of experience. It is to be regretted that we do not more frequently find detailed his method of experimenting, than occasionally in the course of his dialogues, and it is chiefly upon the references which he makes to the results with which the experiments furnished him, and upon the avowed and notorious character of his philosophy, that the truth of these accounts must be made to depend. Venturi has found several unpublished papers by Galileo on the subject of motion, in the Grand Duke's private library at Florence, bearing the date of 1590, in which are many of the theorems which he afterwards developed in his Dialogues on Motion. These were not published till fifty years afterwards, and we shall reserve an account of their contents till we reach that period of his life.

Galileo was by no means the first who had ventured to call in question the authority of Aristotle in matters of science, although he was undoubtedly the first whose opinions and writings produced a very marked and general effect. Nizzoli, a celebrated scholar who lived in the early part of the 16th century, had condemned Aristotle's philosophy, especially his Physics, in very unequivocal and forcible terms, declaring that, although there were many excellent truths in his writings, the number was scarcely less of false, useless, and ridiculous propositions. About the time of Galileo's birth, Benedetti had written expressly in confutation of several propositions contained in Aristotle's mechanics, and had expounded in a clear manner some of the doctrines of statical equilibrium. Within the last forty years it has been established that the celebrated painter Leonardo da Vinci, who died in 1519, amused his leisure hours in scientific pursuits; and many ideas appear to have occurred to him which are to be found in the writings of Galileo at a later date. It is not impossible that Galileo may have been acquainted with Leonardo's investigations, although they remained, till very lately, almost unknown to the mathematical world. This supposition is rendered more probable from the fact, that Mazenta, the preserver of Leonardo's manuscripts, was, at the very time of their discovery, a contemporary student with Galileo at Pisa. Kopernik, or, as he is usually called, Copernicus, a native of Thorn in Prussia, had published his great work, De Revolutionibus, in 1543, restoring the knowledge of the true theory of the solar system, and his opinions were gradually and silently gaining ground.

It is not unlikely that Galileo also, in part, owed his emancipation from popular prejudices to the writings of Giordano Bruno, an unfortunate man, whose unsparing boldness in exposing fallacies and absurdities was rewarded by a judicial murder, and by the character of heretic and infidel, with which his executioners endeavoured to stigmatize him for the purpose of covering over their own atrocious crime. Bruno was burnt at Rome in 1600, but not, as Montucla supposes, on account of his "Spaccio della Bestia trionfante." The title of this book has led him to suppose that it was directed against the church of Rome, to which it does not in the slightest degree relate. Bruno attacked the fashionable philosophy alternately with reason and ridicule, and numerous passages in his writings, tedious and obscure as they generally are, show that he had completely outstripped the age in which he lived. Among his astronomical opinions, he believed that the universe consisted of innumerable systems of suns with assemblages of planets revolving round each of them, like our own earth, the smallness of which, alone, prevented their being observed by us. He remarked further, "that it is by no means improbable that there are yet other planets revolving round our own sun, which we have not yet noticed, either on account of their minute size or too remote distance from us." He declined asserting that all the apparently fixed stars are really so, considering this as not sufficiently proved, "because at such enormous distances the motions become difficult to estimate, and it is only by long observation that we can determine if any of these move round each other, or what other motions they may have." He ridiculed the Aristotelians in no very measured terms--"They harden themselves, and heat themselves, and embroil themselves for Aristotle; they call themselves his champions, they hate all but Aristotle's friends, they are ready to live and die for Aristotle, and yet they do not understand so much as the titles of Aristotle's chapters." And in another place he introduces an Aristotelian inquiring, "Do you take Plato for an ignoramus--Aristotle for an ass?" to whom he answers, "My son, I neither call them asses, nor you mules,--them baboons, nor you apes,--as you would have me: I told you that I esteem them the heroes of the world, but I will not credit them without sufficient reason; and if you were not both blind and deaf, you would understand that I must disbelieve their absurd and contradictory assertions." Bruno's works, though in general considered those of a visionary and madman, were in very extensive circulation, probably not the less eagerly sought after from being included among the books prohibited by the Romish church; and although it has been reserved for later observations to furnish complete verification of his most daring speculations, yet there was enough, abstractedly taken, in the wild freedom of his remarks, to attract a mind like Galileo's; and it is with more satisfaction that we refer the formation of his opinions to a man of undoubted though eccentric genius, like Bruno, than to such as Maestlin, who, though a diligent and careful observer, seems seldom to have taken any very enlarged views of the science on which he was engaged.

With a few exceptions similar to those above mentioned, the rest of Galileo's contemporaries well deserved the contemptuous epithet which he fixed on them of Paper Philosophers, for, to use his own words, in a letter to Kepler on this subject, "this sort of men fancied philosophy was to be studied like the AEneid or Odyssey, and that the true reading of nature was to be detected by the collation of texts." Galileo's own method of philosophizing was widely different; seldom omitting to bring with every new assertion the test of experiment, either directly in confirmation of it, or tending to show its probability and consistency. We have already seen that he engaged in a series of experiments to investigate the truth of some of Aristotle's positions. As fast as he succeeded in demonstrating the falsehood of any of them, he denounced them from his professorial chair with an energy and success which irritated more and more against him the other members of the academic body.

There seems something in the stubborn opposition which he encountered in establishing the truth of his mechanical theorems, still more stupidly absurd than in the ill will to which, at a later period of his life, his astronomical opinions exposed him: it is intelligible that the vulgar should withhold their assent from one who pretended to discoveries in the remote heavens, which few possessed instruments to verify, or talents to appreciate; but it is difficult to find terms for stigmatizing the obdurate folly of those who preferred the evidence of their books to that of their senses, in judging of phenomena so obvious as those, for instance, presented by the fall of bodies to the ground. Aristotle had asserted, that if two different weights of the same material were let fall from the same height, the heavier one would reach the ground sooner than the other, in the proportion of their weights. The experiment is certainly not a very difficult one, but nobody thought of that method of argument, and consequently this assertion had been long received, upon his word, among the axioms of the science of motion. Galileo ventured to appeal from the authority of Aristotle to that of his own senses, and maintained that, with the exception of an inconsiderable difference, which he attributed to the disproportionate resistance of the air, they would fall in the same time. The Aristotelians ridiculed and refused to listen to such an idea. Galileo repeated his experiments in their presence from the famous leaning tower at Pisa: and with the sound of the simultaneously falling weights still ringing in their ears, they could persist in gravely maintaining that a weight of ten pounds would reach the ground in a tenth part of the time taken by one of a single pound, because they were able to quote chapter and verse in which Aristotle assures them that such is the fact. A temper of mind like this could not fail to produce ill will towards him who felt no scruples in exposing their wilful folly; and the watchful malice of these men soon found the means of making Galileo desirous of quitting his situation at Pisa. Don Giovanni de' Medici, a natural son of Cosmo, who possessed a slight knowledge of mechanics on which he prided himself, had proposed a contrivance for cleansing the port of Leghorn, on the efficiency of which Galileo was consulted. His opinion was unfavourable, and the violence of the inventor's disappointment, took the somewhat unreasonable direction of hatred towards the man whose penetration had foreseen the failure. Galileo's situation was rendered so unpleasant by the machinations of this person, that he decided on accepting overtures elsewhere, which had already been made to him; accordingly, under the negotiation of his staunch friend Guido Ubaldi, and with the consent of Ferdinand, he procured from the republic of Venice a nomination for six years to the professorship of mathematics in the university of Padua, whither he removed in September 1592.

Galileo's predecessor in the mathematical chair at Padua was Moleti, who died in 1588, and the situation had remained unfilled during the intervening four years. This seems to show that the directors attributed but little importance to the knowledge which it was the professor's duty to impart. This inference is strengthened by the fact, that the amount of the annual salary attached to it did not exceed 180 florins, whilst the professors of philosophy and civil law, in the same university, were rated at the annual stipends of 1400 and 1680 florins. Galileo joined the university about a year after its triumph over the Jesuits, who had established a school in Padua about the year 1542, and, increasing yearly in influence, had shown symptoms of a design to get the whole management of the public education into the hands of their own body. After several violent disputes it was at length decreed by the Venetian senate, in 1591, that no Jesuit should be allowed to give instruction at Padua in any of the sciences professed in the university. It does not appear that after this decree they were again troublesome to the university, but this first decree against them was followed, in 1606, by a second more peremptory, which banished them entirely from the Venetian territory. Galileo would of course find his fellow-professors much embittered against that society, and would naturally feel inclined to make common cause with them, so that it is not unlikely that the hatred which the Jesuits afterwards bore to Galileo on personal considerations, might be enforced by their recollection of the university to which he had belonged.

Galileo's writings now began to follow each other with great rapidity, but he was at this time apparently so careless of his reputation, that many of his works and inventions, after a long circulation in manuscript among his pupils and friends, found their way into the hands of those who were not ashamed to publish them as their own, and to denounce Galileo's claim to the authorship as the pretence of an impudent plagiarist. He was, however, so much beloved and esteemed by his friends, that they vied with each other in resenting affronts of this nature offered to him, and in more than one instance he was relieved, by their full and triumphant answers, from the trouble of vindicating his own character.

To this epoch of Galileo's life may be referred his re-invention of the thermometer. The original idea of this useful instrument belongs to the Greek mathematician Hero; and Santorio himself, who has been named as the inventor by Italian writers, and at one time claimed it himself, refers it to him. In 1638, Castelli wrote to Cesarini that "he remembered an experiment shown to him more than thirty-five years back by Galileo, who took a small glass bottle, about the size of a hen's egg, the neck of which was twenty-two inches long, and as narrow as a straw. Having well heated the bulb in his hands, and then introducing its mouth into a vessel in which was a little water, and withdrawing the heat of his hand from the bulb, the water rose in the neck of the bottle more than eleven inches above the level in the vessel, and Galileo employed this principle in the construction of an instrument for measuring heat and cold." In 1613, a Venetian nobleman named Sagredo, who has been already mentioned as Galileo's friend and pupil, writes to him in the following words: "I have brought the instrument which you invented for measuring heat into several convenient and perfect forms, so that the difference of temperature between two rooms is seen as far as 100 degrees." This date is anterior to the claims both of Santorio and Drebbel, a Dutch physician, who was the first to introduce it into Holland.

Galileo's thermometer, as we have just seen, consisted merely of a glass tube ending in a bulb, the air in which, being partly expelled by heat, was replaced by water from a glass into which the open end of the tube was plunged, and the different degrees of temperature were indicated by the expansion of the air which yet remained in the bulb, so that the scale would be the reverse of that of the thermometer now in use, for the water would stand at the highest level in the coldest weather. It was, in truth, a barometer also, in consequence of the communication between the tube and external air, although Galileo did not intend it for this purpose, and when he attempted to determine the relative weight of the air, employed a contrivance still more imperfect than this rude barometer would have been. A passage among his posthumous fragments intimates that he subsequently used spirit of wine instead of water.

FOOTNOTES:

Antibarbarus Philosophicus. Francofurti, 1674.

Speculationum liber. Venetiis, 1585.

De l'Infinito Universo. Dial. 3. La Cena de le Cenere, 1584.

Riccoboni, Commentarii de Gymnasio Patavino, 1598.

Nelli.

Nelli.

Venturi. Memorie e Lettere di Gal. Galilei. Modena, 1821.

Prodromo all' Arte Maestra. Brescia, 1670.

THIS period of Galileo's lectureship at Padua derives interest from its including the first notice which we find of his having embraced the doctrines of the Copernican astronomy. Most of our readers are aware of the principles of the theory of the celestial motions which Copernicus restored; but the number of those who possess much knowledge of the cumbrous and unwieldy system which it superseded is perhaps more limited. The present is not a fit opportunity to enter into many details respecting it; these will find their proper place in the History of Astronomy: but a brief sketch of its leading principles is necessary to render what follows intelligible.

The earth was supposed to be immoveably fixed in the centre of the universe, and immediately surrounding it the atmospheres of air and fire, beyond which the sun, moon, and planets, were thought to be carried round the earth, fixed each to a separate orb or heaven of solid but transparent matter. The order of distance in which they were supposed to be placed with regard to the central earth was as follows: The Moon, Mercury, Venus, The Sun, Mars, Jupiter, and Saturn. It became a question in the ages immediately preceding Copernicus, whether the Sun was not nearer the Earth than Mercury, or at least than Venus; and this question was one on which the astronomical theorists were then chiefly divided.

We possess at this time a curious record of a former belief in this arrangement of the Sun and planets, in the order in which the days of the week have been named from them. According to the dreams of Astrology, each planet was supposed to exert its influence in succession, reckoning from the most distant down to the nearest, over each hour of the twenty-four. The planet which was supposed to predominate over the first hour, gave its name to that day. The general reader will trace this curious fact more easily with the French or Latin names than with the English, which have been translated into the titles of the corresponding Saxon deities. Placing the Sun and planets in the following order, and beginning, for instance, with Monday, or the Moon's day; Saturn ruled the second hour of that day, Jupiter the third, and so round till we come again and again to the Moon on the 8th, 15th, and 22d hours; Saturn ruled the 23d, Jupiter the 24th, so that the next day would be the day of Mars, or, as the Saxons translated it, Tuisco's day, or Tuesday. In the same manner the following days would belong respectively to Mercury or Woden, Jupiter or Thor, Venus or Frea, Saturn or Seater, the Sun, and again the Moon. In this manner the whole week will be found to complete the cycle of the seven planets.

Some idea of the supererogatory labour entailed upon astronomers by the adoption of the system which places the earth in the centre, may be formed in a popular manner by observing, in passing through a thickly planted wood, in how complicated a manner the relative positions of the trees appear at each step to be continually changing, and by considering the difficulty with which the laws of their apparent motions could be traced, if we were to attempt to refer these changes to a real motion of the trees instead of the traveller. The apparent complexity in the heavens is still greater than in the case suggested; because, in addition to the earth's motions, with which all the stars appear to be impressed, each of the planets has also a real motion of its own, which of course greatly contributes to perplex and complicate the general appearances. Accordingly the heavens rapidly became, under this system,

"With centric and eccentric scribbled o'er, Cycle and epicycle, orb in orb;"

crossing and penetrating each other in every direction. Maestlin has given a concise enumeration of the principal orbs which belonged to this theory. After warning the readers that "they are not mere fictions which have nothing to correspond with them out of the imagination, but that they exist really, and bodily in the heavens," he describes seven principal spheres belonging to each planet, which he classes as Eccentrics, Epicycles, and Concentrepicycles, and explains their use in accounting for the planet's revolutions, motions of the apogee, and nodes, &c. &c. In what manner this multitude of solid and crystalline orbs were secured from injuring or interfering with each other was not very closely inquired into.

It is with pain that we observe Delambre taking every opportunity, in his admirable History of Astronomy, to undervalue and sneer at Galileo, seemingly for the sake of elevating the character of Kepler, who appears his principal favourite, but whose merit as a philosopher cannot safely be brought into competition with that of his illustrious contemporary. Delambre is especially dissatisfied with Galileo, for taking no notice, in his "System of the World," of the celebrated laws of the planetary motions which Kepler discovered, and which are now inseparably connected with his name. The analysis of Newton and his successors has now identified those apparently mysterious laws with the general phenomena of motion, and has thus entitled them to an attention of which, before that time, they were scarcely worthy; at any rate not more than is at present the empirical law which includes the distances of all the planets from the sun in one algebraical formula. The observations of Kepler's day were scarcely accurate enough to prove that the relations which he discovered between the distances of the planets from the sun and the periods of their revolutions around him were necessarily to be received as demonstrated truths; and Galileo surely acted most prudently and philosophically in holding himself altogether aloof from Kepler's fanciful devices and numeral concinnities, although, with all the extravagance, they possessed much of the genius of the Platonic reveries, and although it did happen that Galileo, by systematically avoiding them, failed to recognise some important truths. Galileo probably was thinking of those very laws, when he said of Kepler, "He possesses a bold and free genius, perhaps too much so; but his mode of philosophizing is widely different from mine." We shall have further occasion in the sequel to recognise the justice of this remark.

FOOTNOTES:

Dion Cassius, lib. 37.

The pretended translation by Roberval of an Arabic version of Aristarchus, "De Systemate Mundi," in which the Copernican system is fully developed, is spurious. Menage asserts this in his observations on Diogen. Laert. lib. 8, sec. 85, tom. ii., p. 389. The commentary contains many authorities well worth consulting. Delambre, Histoire de l'Astronomie, infers it from its not containing some opinions which Archimedes tells us were held by Aristarchus. A more direct proof may be gathered from the following blunder of the supposed translator. Astronomers had been long aware that the earth in different parts of her orbit is at different distances from the sun. Roberval wished to claim for Aristarchus the credit of having known this, and introduced into his book, not only the mention of the fact, but an explanation of its cause. Accordingly he makes Aristarchus give a reason "why the sun's apogee must always be at the north summer solstice." In fact, it was there, or nearly so, in Roberval's time, and he knew not but that it had always been there. It is however moveable, and, when Aristarchus lived, was nearly half way between the solstices and equinoxes. He therefore would hardly have given a reason for the necessity of a phenomenon of which, if he observed anything on the subject, he must have observed the contrary. The change in the obliquity of the earth's axis to the ecliptic was known in the time of Roberval, and he accordingly has introduced the proper value which it had in Aristarchus's time.

De Coelo. lib. 2.

Add to tbrJar First Page Next Page

 

Back to top