Read Ebook: Appletons' Popular Science Monthly May 1899 Volume LV No. 1 May 1899 by Various Youmans William Jay Editor
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 350 lines and 76463 words, and 7 pages
Bronze culture, when it did at last appear in this remote part of Europe, came upon the scene suddenly and in full maturity. Whether this was as early as the eighth to the tenth century, as Montelius avers, is disputed by many. All are nevertheless agreed that evidence is absolutely lacking that the art was of indigenous origin. From what part of the world this knowledge of bronze ultimately came we leave an open question, as also whether it came with Phoenician traders or direct from Greece, as Worsaae affirms. It was certainly introduced into Sweden, making its way into Norway about the same time directly from the peninsula of Jutland. Its first appearance is in a highly evolved state. Such crude attempts at manufacture as Chantre finds so long prevalent along the Rhone Valley, for example, are entirely absent. Both in form and ornamentation the hand of the master is apparent. This bronze age, like that of stone, lasted a very long time--far longer than anywhere else on the continent. Central Europe passed through three stages of metallic progress while Scandinavia was evolving two. Not until the second or third century of our era--not until the time of the Romans, it would appear--did iron begin to supplant bronze. History repeats itself. The excessive duration of the bronze age, as in the case of stone antecedently, led to the attainment of a remarkable skill. The two accompanying cuts are typical of the best work of this time. In the one case, merely superficial ornament, especially the skillful use of the spiral; in the other, real beauty of form in the bracelet, are clearly apparent. Possessed of such skill in the working of bronze, it is small wonder that the need of a better metal was not felt. Only when fashioned into weapons of war does iron reveal its supremacy over bronze. This, of course, with the campaigns of historical times, brings us to the end of our chronicle.
The prehistoric experience of metal-working in Scandinavia is typical of the other details of its cultural evolution. In its earliest epoch no trace of domestic animals is present. It is rather a remarkable fact that even the reindeer seems to have been unknown. What can Penka say to this in his positive affirmation that the original Aryans got up into Scandinavia, having followed the reindeer from central Europe north after the retreat of the ice sheet? The fact is, archaeologically speaking, from the evidence furnished by the kitchen middens, that if they ever did this "they left a fine country, where deer were plenty, to subsist upon shellfish on the foggy coasts of Denmark." The entire absence of economic motive for such a migration is at once apparent. Men seldom travel far under such conditions. Quite early, however, even in the stone age, do evidences of domestic animals occur, to the dog being added the ox, horse, swine, and sheep. Pottery in a rude form also follows. Finally, and in apparent coincidence with the bronze culture, comes a new custom of incineration. The dead are no longer buried, but burned. A profound modification of religious ideas is hereby implied. It seems to have been at about this time also that our Alpine racial type entered Scandinavia from Denmark, although, as we have already observed, it is yet far from certain that the new race was the active agent in introducing the new elements of culture. All that we know is that they both came from the south, and reached this remote region at about the same time.
That the origins of culture in Europe are certainly mixed would seem to be about the main conclusion to be drawn from our extended discussion. It has an iconoclastic tone. Yet we would not leave the matter entirely in the air, nor would we agree with Mantegazza in his conclusion that "Ignoramus" sums up our entire knowledge of the subject. There is some comfort to be drawn even from this mass of conflicting opinions. Our final destructive aim has been achieved if we have emphasized the danger of correlating data drawn from several distinct sciences, whose only bond of unity is that they are all concerned with the same object--man. The positive contribution which we would seek to make is that the whole matter of European origins is by no means so simple as it has too often been made to appear. It is not imperative that conclusions from all the contributory sciences of physical anthropology, philology, and cultural history should be susceptible of interweaving into a simple scheme of common origins for all. The order of races, for example, need mean nothing as respects priority of culture. Nor do the two sciences, philology and archaeology, involve one another's conclusions so far as civilization is concerned. Language and industrial culture may have had very different sources; their migrations need stand in no relation to one another in the least. Each science is fully justified in its own deductions, but must be content to leave the results of others in peace. Such is the ultimate conclusion to which all the latest authority is tending. Only by a careful comparison of data from each sphere of investigation may we finally hope to combine them all in a composite whole, as many-sided and complex as the life and nature of man itself.
FOOTNOTES:
Advance sheets from The Races of Europe, now in the press of D. Appleton and Company, to appear in May. Footnotes and references are herein largely omitted.
Popular Science Monthly, January, 1898, pp. 304-322.
Le Mirage Orientale, 1893 a; and in his admirable outline of sculptural origins in Europe .
Arii e Italici, Torino, 1898, especially pp. 199-220.
Reinach, 1893 a, pp. 543-548. G. de Mortillet, 1897, denies the claim.
Chantre, 1884; Hoernes, 1892; Bertrand and Reinach, 1894 a; Sergi, 1898 a; and Orsi are best authorities. See also Hallstatt in the subject index of our Bibliography, soon to be published as a Special Bulletin of the Boston Public Library.
Hoernes, 1892, p. 529; Bertrand, 1876 a, second edition, pp. 207-216, fixes about 800 B. C.; but 1894 a, p. 80, carries it back to 1200-1300 B. C.
Zuckerkandl, 1883, p. 96.
Weisbach, 1897 b.
Popular Science Monthly, December, 1897, p. 151.
From Montelius, 1897.
Bertrand, 1876 a and 1876 b, gives a full account of it. The best recent authorities upon Scandinavian culture are Sophus Mueller, 1897, and Montelius, 1895 b. Other works of reference are those of Worsaae, Nilsson, Hildebrand, Madsen and Rygh, full titles being given in our supplementary Bibliography of the Anthropology and Ethnology of Europe. Comprising nearly two thousand titles, it will be provided with a detailed subject index.
Bertrand, 1876 b, p. 40.
Reinach, 1892, pp. 72-78, for severe criticism of Penka's hypotheses.
LIQUID AIR.
BY IRA REMSEN,
PROFESSOR OF CHEMISTRY IN THE JOHNS HOPKINS UNIVERSITY.
Water, the substance most familiar to us, is known in the liquid, in the solid, and in the gaseous state. Everybody knows that by heating the solid it passes into the liquid state, and that by heating the liquid it passes into the form of gas or vapor. So also everybody knows that when the vapor of water is cooled it is liquefied, and that by cooling liquid water sufficiently it becomes solid or turns to ice. In the same way many of the substances that are known to us as liquids, such as alcohol and ether, can be converted into the form of gas or vapor by heat. In fact, this is true of most liquids. The temperature at which a solid passes into the liquid state is called its melting point, and the temperature at which a liquid passes into the gaseous state is called its boiling point. The boiling point of water, for example, is 100? C. in the open air. But the boiling point varies with the pressure exerted upon the surface. The pressure that we ordinarily have to deal with is that of the atmosphere. If the pressure is increased the boiling point is raised, and if the pressure is decreased the boiling point is lowered. In dealing, then, with the conversion of a gas into a liquid, or that of a liquid into a gas, both the temperature and the pressure have to be considered.
Just as water is most familiar to us in the liquid form, so there are substances that are most familiar to us in the gaseous form. In fact, the only gaseous substances that can be said to be familiar to everybody are the gases contained in the air. The principal constituents of the air are nitrogen and oxygen, which form respectively about four fifths and one fifth of its bulk. Besides these gases, however, the air contains water vapor, carbonic-acid gas, ammonia, argon in small quantities, and many other substances in still smaller quantities. For the purposes of this article it is only necessary to have in mind the nitrogen, oxygen, water vapor, and carbonic acid. Of these, the water vapor is easily converted into liquid, as, for example, in the formation of rain, while the other constituents are liquefied with difficulty. The name "liquid air" is applied to the substance that is obtained by converting the air as a whole into a liquid; but in this process the water and the carbonic acid become solid and can be filtered from the liquid so that the latter consists almost wholly of oxygen and nitrogen. A few years ago this liquid was obtainable in only very small quantities. To-day, thanks especially to the efforts of Mr. Charles E. Tripler, of New York, it can be produced in any desired quantity, and at moderate cost. In consequence of this, it has come to be talked about in a familiar way, and many persons have had the privilege of seeing and feeling it, and of learning something about its wonderful properties. The object of this article is to explain the method employed in the production of liquid air, to give an account of some of its properties, and to indicate some of the uses to which it may possibly be put.
In the older text-books of physics and of chemistry certain gases were classed as "permanent," under the impression that these could not be liquefied, and this impression was based upon the fact that all efforts to liquefy them had failed. A brief account of these efforts will be helpful.
Among the so-called permanent gases was chlorine. An English chemist, Northmore, first succeeded, early in this century, in liquefying chlorine. His work was, however, lost sight of, and in 1823 Faraday at the Royal Institution showed independently that this transformation of gaseous chlorine into the liquid can be effected comparatively easily. The method used by him is this: When chlorine gas is passed into cold water it forms with the water a solid product known as chlorine hydrate. If kept well cooled this hydrate can be dried. If then its temperature is raised even to the ordinary temperature of the room, the solid hydrate is decomposed into liquid water and gaseous chlorine. Faraday put some of the solid hydrate into a stout glass tube sealed at one end and bent at the middle. The other end of the tube was then closed. The tube was then suspended so that the two ends were turned downward. On gently warming the end in which was the solid hydrate, this was decomposed into chlorine and water. But the gas given off would under ordinary conditions have occupied a much larger space than the solid hydrate. Being prevented from expanding by the tube in which it was inclosed, it was under very considerable pressure. The end of the tube that was not warmed was cooled, and in this end, in consequence of the pressure and the comparatively low temperature, chlorine, which is gaseous under the ordinary pressure of the air, appeared as a liquid. The general method made use of by Faraday in this classical experiment is that which is always made use of for the purpose of liquefying gases, but for some gases pressures very much higher and temperatures very much lower are required. Faraday himself succeeded in liquefying all the gases then known except oxygen, hydrogen, nitrogen, nitric oxide, and marsh gas. He subjected oxygen to a pressure of about one thousand pounds to the square inch, or nearly seventy atmospheres, but it showed no signs of liquefaction. Later experimenters increased the pressure to four thousand pounds to the square inch, with no better results, so that it is not surprising that it came to be held that some gases are permanent.
Within comparatively recent years several gases have been liquefied on the large scale by means of pressure. These are ammonia, carbonic acid, nitrous oxide, and chlorine. Ammonia is used for producing low temperatures, as in breweries and in cold-storage plants and in the manufacture of ice; carbonic acid, for fire extinguishers and for charging beer with the gas; nitrous oxide, for producing anaesthesia; and chlorine in connection with several branches of chemical manufacture. The production of low temperatures by means of liquid ammonia and of liquid carbonic acid will be more fully dealt with further on, when the principles involved will be briefly presented. It is to be borne in mind that these substances are liquefied by means of pressure alone, at temperatures that are easily reached, so that it appears that by mechanical pressure it is possible to produce low temperatures. In 1869 an important fact was discovered by Andrews. It was that for every gas there is a temperature above which it is impossible to liquefy it by pressure. Thus, if chlorine is at any temperature above 146? C. it can not be liquefied. This temperature is called the "critical temperature" of chlorine. The pressure to which the gas must be subjected at the "critical temperature" in order that the gas may be liquefied is called the "critical pressure." In the case of chlorine this is 93.5 atmospheres. Now, the critical temperature of the gases that were called permanent gases are very low--lower than could be reached by the means at the command of earlier experimenters. The critical temperature of oxygen, for example, is -118.8? C. , while that of nitrogen is -146? C. . The critical pressures are 50.8 and 35 atmospheres respectively. As there is no difficulty in obtaining these pressures, the problem of liquefying oxygen and nitrogen and air resolves itself into finding a method of producing temperatures below the critical temperatures of these gases.
It is well known that a temperature somewhat below the freezing point of water can be produced artificially by mixing ice and salt. The ordinary ice-cream freezer is a familiar application of this method of producing cold. Other freezing mixtures that are sometimes used consist of calcium chloride and snow, that gives the temperature -48? C. , and solid carbonic acid and ether, that is capable of lowering the temperature to -100? C. . But even with the latter mixture it is not possible to reach the critical temperature of oxygen or that of nitrogen. How, then, is it possible to reach these extremely low temperatures?
In order to answer this question it will be necessary to take into consideration certain temperature changes that are observed when solids are melted and liquids are boiled, as well as when gases are liquefied and liquids are frozen. When heat is applied to a mass of ice at its melting point it melts and forms a mass of water having the same temperature. Heat disappears in the operation. It is stored up in the water. This disappearance of heat that accompanies the melting of ice can be shown in a very striking way by mixing a certain weight of ice with the same weight of water that has been heated to 80? C. . The ice will melt and all the water obtained will be found to have the temperature of the melting ice--that is, 0? C. . The water of 80? C. is thus cooled down to 0? by the melting of the ice. Again, when heat is applied to water its temperature rises until the boiling point is reached. Then it is converted into vapor, but this vapor has the temperature of the boiling water. During the process of boiling there is no rise in the temperature of the water or of the vapor. Heat disappears, therefore, or is used up in the process of vaporization. Similar phenomena are observed whenever a solid is melted or a liquid is boiled. When, however, a gas is liquefied it gives up again the heat that is absorbed by it when it is formed from a liquid; and so also when a liquid solidifies it gives up the heat it absorbs when it is formed from a solid.
But it is not necessary that a gas should be converted into a liquid in order that it should give up heat. Whenever it is compressed it becomes warmer. Some of the heat stored up in it is, as it were, squeezed out of it. Conversely, whenever a gas expands, it takes up heat and, of course, surrounding objects from which the heat is taken become colder. Now, it is a comparatively simple matter to compress air. Every wheelman knows that, and he also knows that the process causes a rise in temperature; at least he knows it if he uses a small hand pump. With large pumps run by steam any desired pressure can be reached. This is simply a question of securing the proper engines, and vessels sufficiently strong to stand the pressure. It has already been pointed out that several gases are now liquefied on the large scale by means of pressure. It is to be noted that low temperatures can be produced by converting certain gases, such as ammonia and carbonic acid, into liquids, and by compressing certain gases, as, for example, air. When liquefied gases are used it is only necessary to allow them to pass rapidly into the gaseous state, when more or less heat is absorbed. This is the basis for the use of liquid ammonia in the manufacture of ice. A vessel containing the liquid ammonia is placed in another containing water. The inner vessel being opened, the liquid ammonia is rapidly converted into the gas; heat is absorbed from the water; it freezes. When a vessel containing liquid carbonic acid is opened so that the gas that is formed escapes through a small valve, so much heat is absorbed that a part of the liquid carbonic acid is itself frozen. In this case the substance is present in all three states of aggregation--the solid, the liquid, and the gaseous. The use of a mixture of ether and solid carbonic acid as a freezing mixture has already been referred to. Its value depends, of course, principally upon the fact that solid carbonic acid is liquefied, and the liquid then converted into gas, both of which operations involve absorption of heat.
We are now prepared to understand the important experiments of Cailletet and of Pictet, the results of which were published in 1877. It should be said that they worked independently of each other--Cailletet in Paris and Pictet in Geneva. Pictet liquefied carbonic acid and sulphur dioxide by pressure. The liquid carbonic acid was passed through a tube that was surrounded by liquid sulphur dioxide boiling in a partial vacuum. The liquid carbonic acid thus cooled was then boiled under diminished pressure in a jacket surrounding a tube in which the gas to be liquefied was contained under high pressure. When this gas was allowed to escape from a small opening its temperature was so reduced by the expansion that a part of it was liquefied in the tube and passed off as a liquid. Cailletet worked in essentially the same way, but on a smaller scale. Neither of these experimenters liquefied oxygen or nitrogen on the large scale, but they pointed out the way that must be followed in order that success may be attained. They destroyed the belief in "permanent" gases.
The introduction of the vacuum vessel by Dewar has been of great service in all the work on liquefied gases. A vacuum vessel is a double-walled glass vessel, as shown in Fig. 1, G. The space between the inner and outer walls of the vessel is exhausted by means of an air pump before it is closed. The vessel is therefore surrounded by a vacuum. As heat is not conducted by a vacuum, it is possible to keep specimens of liquefied gases in such vessels for a surprisingly long time. Heat enough can not pass through the vacuum to vaporize the liquid rapidly. The most common form of these vessels is that of a globe. Such a vessel is known as a Dewar globe or bulb.
It has been found that liquid air can be kept very well by putting it in a tin or galvanized iron vessel, which in turn is placed in a larger one, and then filling the space between the two with felt. Under these conditions vaporization takes place quite slowly, and it is possible to transport the liquid comparatively long distances. It has, for example, been transported from New York to Baltimore and Washington. In one case with which the writer is familiar two cans were taken from Mr. Tripler's laboratory in the morning, delivered at the Johns Hopkins University in the afternoon, and used to illustrate a lecture in the evening. After the lecture there was enough left for certain experiments that were carried on during the rest of the night.
Tripler, Linde, and Hampson have all succeeded in devising forms of apparatus by means of which air can be liquefied without the aid of other cooling agents than the expanding air. In principle the methods employed by these three workers are essentially the same. It appears from the published statements that at the present time Tripler's plant is the most efficient. While a few years ago a half pint or so of liquid air is said to have cost five hundred dollars, now five gallons can be made for about twenty dollars, and probably much less. The general working of Tripler's apparatus can be made clear by the aid of the accompanying drawing, Fig. 2. A^1, A^2, A^3 represent steam compression pumps. Air is taken through I from above the roof of the laboratory. In the first pump it is compressed to sixty-five pounds to the square inch. It, of course, becomes heated as it is compressed. In order to cool it down again it is passed through a coil, B^1, which is surrounded by water of the ordinary temperature. This compressed and cooled air is then further compressed in the second pump, A^2, to four hundred pounds to the square inch. Again it is cooled in the same way as before by means of water which circulates around the coil B^2. Once more the air is compressed, this time in the cylinder A^3, in which it is subjected to a pressure of two thousand to twenty-five hundred pounds to the square inch; and then this compressed air is brought down to the ordinary temperature in the cooler B^3. The air under this great pressure is now passed through the purifier C, where it is freed from particles of dust and to a great extent from moisture. From C the air passes into the inner bent tube, about thirty feet in length, until it reaches D. This may be called the critical point of the apparatus. Here is situated a needle valve from which the air is allowed to escape. It, of course, expands enormously, and is correspondingly cooled. This very cold air passes into the space between the inner and outer tubes, and finally escapes at F. The result of this is that the compressed air in the inner tube is soon cooled down so far that a considerable part of the air that escapes at D appears in the liquid form. This collects in the lower part of the jacket, and on opening the stopcock at E the liquid escapes in a stream the size of one's finger.
In Mr. Tripler's laboratory the liquid is collected in the cans already referred to. Although for the reasons mentioned the evaporation of the liquid is comparatively slow, it is constantly going on, and as the gas formed occupies a very much larger volume under the pressure of the atmosphere than the liquid from which it is formed, it is necessary to leave the cans loosely covered. Otherwise the pressure would increase to such an extent as to burst any but the strongest vessels. One cubic foot of liquid air gives at atmospheric pressure eight hundred cubic feet of gaseous air.
Although liquid air has the temperature -191? C. , one can without danger pass the hand through it rapidly. The sensation is a new one, but it is evanescent. Very serious results would follow if the hand were allowed to remain in the liquid even for a short time. The tissues would be killed. So also, it is possible to pass the hand rapidly through molten lead without injury. In the latter case the moisture on the hand is converted into vapor which forms a protecting cushion between the hand and the hot liquid; while, in the former case, the heat of the hand converts the liquid air immediately surrounding it into gas which prevents the liquid from coming in contact with the hand.
When the liquid is poured out of a vessel in the air it is rapidly converted into gas. The great lowering in the temperature causes a condensation of the moisture of the air in the form of a cloud. The same thing is seen when the cover is removed from a can containing the liquid. Of course, this liquid does not wet things as water does. When, however, as happened in New York, the lecturer deliberately pours a dipperful of the liquid upon a priceless Worth gown, he may expect to hear expressions of horror from the owner. This experiment passed off most successfully. Every trace of the liquid air was converted into invisible gases before the fleeting agony of the sympathetic audience had passed away.
The effects of very low temperature upon a number of substances have been studied, and some of them can easily be shown. Paraffin, resin, and rubber immersed in liquid air soon become very brittle, and the color of the resin is completely changed. A beefsteak or an onion also becomes brittle, and can be broken into small fragments by the blow of a hammer. A similar effect is produced in the case of some metals. Tin and iron, for example, become brittle, and the tenacity of the iron is greatly increased. A copper wire, however, retains its flexibility. At low temperatures the electric conductivity of all metals is increased. In general, the lower the temperature the greater the conductivity. If a copper wire could by any means be kept cold enough, electrical energy could be transmitted by it with but little loss--perhaps none. Mercury is easily frozen by surrounding it with liquid air, and the solid thus formed is very hard, though if it is cooled down sufficiently it becomes brittle.
Phosphorescence is greatly increased by cooling substances down to the temperature of liquid air. This has been shown by means of water, milk, paper, eggs, and feathers. An egg and a feather could be distinctly seen in a dark room.
Scarlet iodide of mercury is converted into the yellow variety when it is subjected to the temperature of liquid air. Some other colors are changed under the same circumstances, but not enough is known of this subject to warrant a general statement.
Attention has already been called to the fact that liquid air loses its nitrogen more rapidly than it does its oxygen, and that, after a time, the residue contains a large proportion of oxygen. As combustion is combination with oxygen, combustion or burning takes place more readily in contact with this liquid oxygen than it does in the air. If a lighted match is attached to the end of a steel watch spring, and this then plunged beneath the surface of liquid air, the spring will soon take fire and burn brilliantly, the sparks flying off for some distance in beautiful coruscations. Hair felt, which does not burn in the air, burns in a flash when soaked with liquid air. Finally, when liquid air is confined in any vessel not capable of sustaining an enormous pressure, say about ten thousand pounds to the square inch, the vaporization goes on until the vessel bursts or the stopper is forced out. It might therefore be used as an explosive without any addition, but its manipulation is not altogether simple.
Now for the inevitable question: Of what use is liquid air likely to be? This is a perfectly proper question, and yet, if scientific workers always stopped to ask it, and would not work unless they could find a favorable answer, progress would, to say the least, be much slower than it is. Most great practical discoveries have necessarily passed through the plaything stage. Some of the most important discoveries have not even furnished playthings, and have found no practical applications as this expression is commonly understood. But the production of liquid air, while furnishing mankind with a beautiful and instructive plaything, seems likely to find practical applications. We may look for these in four directions, to each of which a short paragraph may be devoted:
First, as a cooling agent. Low temperature is marketable. To be sure, the demand for the extremely low temperature that can be produced by liquid air does not exist to-day, but this concentrated low temperature can be diluted to suit conditions. The only question to be answered in this connection is, then, What is the cost of cold produced by liquid air? It is impossible for any one to answer this question at all satisfactorily at present. It can only be said that this is what experimenters are trying to find out. It appears, however, that they are on the way to cheap liquid air, and that as the processes are improved the price will become lower and lower.
The third application of liquid air that has been suggested is in the preparation of an explosive. In fact, an explosive has been made and used for some time in which liquid air is one of the constituents. When the liquid from which a part of the nitrogen has boiled off is mixed with powdered charcoal, the mixture burns with great rapidity and great explosive force. "To make this explosive, Dr. Linde pours the liquid containing about forty or fifty per cent of oxygen on fragments of wood charcoal, two or four cubic millimetres in size. These are kept from scattering under the ebullition of the liquid by mixing them into a sort of sponge with about one third of their weight of cotton wool." Of course, this explosive must be made at or near the place where it is used. It has been in use in the way of a practical test in a coal mine at Pensberg, near Munich. It is claimed that the results were satisfactory. The chief advantage of the explosive is its cheapness, and the fact that it soon loses its power of exploding.
Finally, the fourth application of liquid air is for the purpose of getting oxygen from the air. This can be accomplished by chemical means, but the chemical method is somewhat expensive. Oxygen has commercial value, and cheap oxygen would be a decided advantage in a number of branches of industry. It will be observed that it is the liquid oxygen that makes possible the preparation of the explosive described in the last paragraph. Oxygen as such in the form of gas is of value in Deacon's process for the manufacture of chlorine. In this process air and hydrochloric acid are caused to act upon each other so as to form water and chlorine. The nitrogen takes no part in the act, and it would be an advantage if it could be left out. It is only the oxygen that is wanted. There are many other possible uses for oxygen either in the liquid or in the gaseous form, but these need no mention here.
In conclusion it may safely be said that it is highly probable that liquid air will be found to be a useful substance, but it is impossible at present to speak with any confidence of the particular uses that will be made of it. As work with it is being carried on energetically in at least three countries, we may confidently expect important developments in the near future.
THE PHYSICAL GEOGRAPHY OF THE WEST INDIES.
BY F. L. OSWALD.
The abundance of birds on the four largest islands of the West Indian archipelago, where indigenous mammals are almost limited to rodents and bats, has often suggested the conjecture that the ancestors of those islanders must have been immigrants from the east coasts of the American mainland; and that theory seems to be confirmed by two facts: the identity, or similarity, of numerous Mexican and West Indian species, and the circumstance that those analogies include so many swift-winged birds.
"When they alight on a dry branch," says Captain Gosse, in his Jamaica chronicle, "their emerald hue is conspicuous and affords a fair mark for the gunner, but in a tree of full foliage their color proves an excellent concealment. They seem aware of this, and their sagacity prompts them to rely on it for protection. Often we hear their voices proceeding from a certain tree, or have marked the descent of a flock, but on proceeding to the spot, though the eye has not wandered from it, we can not discover an individual; we go close to the tree, but all is silent; we institute a careful survey of every part with the eye, to detect the slightest motion, or the form of a bird among the leaves, but in vain, and we begin to think that they have stolen off unperceived, but on throwing a stone into the tree a dozen voices burst forth into cry, and as many green birds dart forth upon the wing."
The gorgeous macaws, on the other hand, seem to owe their color contrasts to sexual selection. "Ya son vencidos los pavos de India"--"That does beat a Hindostan peacock"--exclaimed King Ferdinand, when Columbus introduced those most splendid products of the American tropics.
Economical Nature rarely wastes the gift of song on a bird of bright plumage, but it is less easy to understand why so many feathered beauties should have been afflicted with harsh and positively repulsive voices. The horrid screams of the peacocks, guinea hens, and macaws can hardly be supposed to charm their mates, and are too easily recognized to deter their natural enemies. But the roars of some species of hornbills would almost seem intended to serve the latter purpose.
Add to tbrJar First Page Next Page Prev Page