Read Ebook: The Works of Francis Maitland Balfour Volume 2 (of 4) A Treatise on Comparative Embryology: Invertebrata by Balfour Francis M Francis Maitland Foster M Michael Sir Editor Sedgwick Adam Editor
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page
Ebook has 2199 lines and 165195 words, and 44 pages
or hypoblast is mainly formed of large nutritive cells. From these cells an epithelial hypoblastic layer becomes secondarily differentiated, the exact relations of which differ somewhat in the various types. The nutritive cells themselves do not appear to become directly converted into the permanent hypoblastic tissues. The development of the adult from the planula commences by the thickening of the epiblastic layer, usually at one pole , and the formation at this pole of a series of bud-like structures , which become converted into the hydrophyllia, nectocalyces etc. The main oral part of the planula becomes generally converted into the polypite, though in some instances it remains as a yolk-sack, and only secondarily gives rise to a polypite.
The difficulty of deciding this point on embryological evidence depends on the fact that ontologically a tentacle and a true bud arise in the same way, viz. as papilliform outgrowths containing prolongations of both the primitive germinal layers. The balance of evidence is nevertheless in my opinion in favour of regarding the Siphonophora as compound stocks, and the views of Claus on this subject appear to me the most satisfactory.
The most primitive condition is probably that like Physophora in an early stage with an hydrophyllium enclosing a polypite . In this condition the whole larva may be compared to a single Medusa in which the primitive hydrophyllium represents the umbrella of the Medusa, and the polypite the manubrium. The tentacle which appears so early is probably not to be regarded as a modified zooid, but as a true tentacle. The absence of a ring of tentacles is correlated with the bilateral symmetry of the Siphonophora.
The primitive zooid of a Siphonophora stock is thus a Medusa. Like Sarsia and Wilsia this Medusa must be supposed to have been capable of budding. The ordinary nectocalyces by their resemblance to the umbrellas of typical Medusae are clearly such buds of the medusiform type. The same may be said of the pneumatophore, which, as pointed out by Metschnikoff, is identical in its development with a nectocalyx. Both are formed by a solid process of epiblast in which a cavity--the cavity of the nectocalyx or pneumatocyst--is eventually hollowed out. Around this there appears a double layer of hypoblast containing a prolongation of the gastrovascular cavity; and this is in its turn enclosed by a layer of epiblast which forms the covering of the convex surface of the nectocalyx and the external epiblast of the pneumatophore.
The generative gonophores are clearly also zooids, and the hydrophyllia are probably a rudimentary form of umbrella. In many cases the hydrophyllium of the primitive polypite is absent. In such instances it is necessary to suppose that the umbrella of the primitive zooid of the whole colony has become aborted. Leuckart originally took a somewhat different view from the above in that he regarded the starting point of the Siphonophora to be a compound fixed Hydrozoon stock, which became detached and free-swimming.
Acraspeda. The embryonic development of several of the forms of the Acraspeda has been investigated by Kowalevsky and Claus . Their observations seem to point to an invaginate gastrula being characteristic of this group.
I use this term for the group, often known as the Discophora, which includes the Pelagidae, Rhizostomidae, and Lucernaridae.
At the point of attachment there is developed a peculiar pedal disc, and around the mouth there appears a fold of epiblast which gives rise to an oral disc . Two tentacles first make their appearance, but one of these is primarily much the largest, though eventually the second overtakes it in its growth. A second pair of tentacles next becomes formed, giving to the larva a 4-radial symmetry. Between these four new tentacles subsequently sprout out, and in the intermediate planes four ridge-like thickenings of the hypoblast, projecting into the cavity of the stomach, make their appearance. They imperfectly divide the stomach into four chambers, to each of which one of the primary tentacles corresponds; they may be regarded as homologous with the mesenteries of the Actinozoa. The number of tentacles goes on increasing somewhat irregularly up to sixteen. All the tentacles contain a solid hypoblastic axis. Muscular elements are developed from the epiblast.
With the above changes the so-called Hydra tuba or Scyphistoma form is reached . The peculiar strobilization of this form is dealt with in the section devoted to the metamorphosis.
Aurelia is stated by Kowalevsky to develop in the same way as Cassiopea; and the one stage of Rhizostoma observed is that in which it has a gastrula form.
In Pelagia the ovum directly gives rise to a form like the parent. The segmentation and the invagination take place nearly as in Cassiopea, but the archenteric cavity is relatively much smaller, and the large space between it and the epiblast becomes filled with the gelatinous tissue which forms the umbrella. The blastopore does not appear to close but to become directly converted into the mouth. As in Cassiopea the larva takes a somewhat four-sided pyramidal form. The mouth is placed at the base. The pyramid becomes subsequently flatter, and at the four corners four tentacles grow out which increase to eight by division. The flattening continues till the larva reaches a form hardly to be distinguished from the Ephyra resulting from the strobilization of the fixed Scyphistoma form of other Acraspeda.
Alcyonidae. In the Alcyonidae the segmentation appears always to lead to the formation of a solid morula, which becomes a planula by delamination. The true enteric cavity is formed by an absorption of the central cells, but the axial portion of the gastric cavity and mouth are formed by an epiblastic invagination.
The development of these types has been mainly studied by Kowalevsky , and my knowledge of his results is derived from German abstracts of the original Russian memoirs.
The German abstract is very obscure as to the formation of the mouth.
Zoantharia. Amongst the Zoantharia several forms have been investigated by Kowalevsky and Lacaze Duthiers , of which some are stated by the former author to pass through an invaginate gastrula stage, while in other instances the hypoblast is probably formed by delamination.
To the first group belongs an edible form of Sea Anemone found near Messina, Cerianthus, and perhaps also Caryophyllium. In the first of these segmentation results in the formation of a blastosphere. A normal invagination obliterating the segmentation cavity then ensues, and the blastopore narrows to form the mouth. The borders of the mouth bend inwards and so give rise to the gastric cavity which as in the Alcyonidae is lined by epiblast. Simultaneously with the formation of the mouth there appear the two first mesenteries.
In Cerianthus the segmentation is unequal, the early stages are the same as in the Actinia just described, but the hypoblast cells give rise to a mass of fatty material filling up the enteric cavity, which becomes eventually absorbed.
In the majority of the Zoantharia so far investigated, including species of Actinia, Sagartia, Bunodes, Astroides, Astraea, the segmentation, which is often unequal and not accompanied by the formation of a segmentation cavity, results in a solid two-layered ciliated planula. In these forms the impregnation takes place in the ovary, and the early stages of development are passed through in the maternal tissues.
I have this on the authority of Kleinenberg. The existence of an unequal segmentation probably indicates an epibolic gastrula.
One end of the planula becomes somewhat oval and develops a special bunch of cilia. At the other end a shallow depression appears, which becomes deeper and forms an involution lined by epiblast. This involution is the stomodaeum, and becomes the so-called gastric cavity. The true enteric cavity lined by hypoblast is for some time filled with yolk material. The larva always swims with the aboral end directed forwards.
Between the two embryonic layers a homogeneous membrane is formed, similar to that already described in the Alcyonidae.
The further development of the larvae especially concerns the formation of mesenteries, tentacles and calcareous skeleton. With reference to this subject the observations of Lacaze Duthiers are especially valuable and striking.
In the adult it is usually possible to recognise in the tentacles a symmetry of six. There are six primary tentacles, six secondary, twelve tertiary, twenty-four quaternary, etc. In the hard septa of the skeleton the same law is followed up to the third cycle, but beyond that, in the cases where the point can be verified, there appear to be only twelve septa in each additional cycle. The observations of Lacaze Duthiers have shewn that this symmetry is only secondarily acquired and does not in the least correspond with the succession of the parts in development.
His observations were conducted on three species of Zoantharia without a skeleton, viz. Actinia mesembryanthemum, Sagartia, and Bunodes gemmacea; while Astroides calycularis served as the type for his investigations on the corallum. It will be convenient to commence with his results on Actinia mesembryanthemum which served as his type.
After the twelve tentacles have become established they become secondarily divided into two cycles of six respectively larger and smaller tentacles, which alternate with each other. The two tentacles pertaining to the two original chambers belong to the cycle of larger tentacles. The mesenteric filaments appear first of all on the primary pair of septa. The increase in the number of tentacles and chambers from 12 to 24 has been found to take place in a very remarkable and unexpected way. The law is expressed by Lacaze Duthiers as follows. "The appearance of the new chambers is not, as has been believed, a consequence of the production of a single chamber between each of the twelve already existing chambers, but of the birth of two new chambers in each of the six elements of the smaller cycle." The result of this law is that a pair of tentacles of the third cycle is placed in every alternate space, between a large and a small tentacle, of the two already existing cycles, which may conveniently be called the first and second cycles .
The twenty-four tentacles formed in the above manner are obviously at first very irregularly arranged , but they soon acquire a regular arrangement in three graduated cycles of 6, 6 and 12. The first cycle of the six largest tentacles is the large cycle of the previous stage, but the two other cycles are heterogeneous in their origin, each of them being composed partly of the twelve tentacles last formed, and partly of the six tentacles of the second cycle of the previous stage.
The further law of multiplication has been thus expressed by Lacaze Duthiers: "The number of chambers and still later that of the corresponding tentacles is carried from 24-48 and from 48-96 by the birth of a pair of elements in each of the 12 or 24 chambers, above which are placed the smallest tentacles which together constitute the fourth or fifth cycle. Since, after the formation of each fresh cycle, the arrangement of the tentacles again becomes symmetrical, it is obvious that all the equal sized cycles except the first are formed of tentacles entirely heterogeneous as to age."
The fixation of the free-swimming larva takes place during the period when the tentacles are increasing from 12 to 24.
The general formation of the chambers in Bunodes and Sagartia is nearly the same as in Actinia.
In the two types of Actinozoa with an embolic gastrula stage the laws as to the formation of the tentacles do not appear to be the same as those regulating the forms observed by Lacaze Duthiers.
In Cerianthus four tentacles are formed simultaneously at the period when only four chambers are present. In Arachnitis the succession of the tentacles is stated to resemble that in Cerianthus. There are originally four tentacles, and at one extremity of the long axis of the mouth are the oldest tentacles, while at the other tentacles are constantly added in pairs. An odd tentacle is always found at the extremity of the mouth opposite the oldest tentacles.
In the other species with an embolic gastrula eight tentacles would seem to appear simultaneously at the period when eight chambers are present; though on this point Kowalevsky's description is not very clear. The presence of such a stage would seem to indicate a close affinity to the Alcyonidae.
Amongst the sclerodermatous Actinozoa, except Caryophyllium, the embryo closely resembles that of the delaminate Malacodermata. The first stages occur in the ovary, and the larva is dehisced into the body cavity as a two-layered ciliated planula.
The laws affecting the formation of the first twelve tentacles and septa appear to be nearly the same as for the Malacodermata. The hard parts begin as a rule to be formed when twelve tentacles have appeared, at which period also the fixation of the larva takes place. On fixation the larva becomes very much flattened.
After the formation of the theca the septa become divided into two cycles by the predominant growth of six of them. On the coalescence of the septa with the theca the space between the two limbs of the Y becomes filled up with calcareous tissue. The law of the formation of the third cycle of septa has not been worked out, so that it is not possible to state whether it follows the peculiar principles regulating the growth of the tentacles.
A peculiar larva, probably belonging to the Actinozoa, has been described by Semper. It has an elongated form and is provided with a longitudinal ridge of cilia. There is a mouth at one end of the body and an anus at the opposite extremity. The mouth leads into an oesophagus, which opens freely into a stomach with six mesenteries. In the skin are numerous thread-cells. A mesotrochal worm-like larva, also provided with thread-cells, and found at the same time, was conjectured by Semper to be a younger form of this larva.
Ctenophora. The ovum of the Ctenophora is formed of an outer granular protoplasmic layer and an inner spongy mass with fatty spherules. It is enveloped in a delicate vesicle, the diameter of which is very much greater than that of the contained ovum. This vesicle appears to be filled with sea-water, in which the ovum floats.
Fertilized ova may usually be easily obtained by keeping the captured adults in water from 12-24 hours. The two main authorities on the development of these forms are unfortunately at variance on one or two of the most fundamental points. It seems however that the embryonic layers are formed by a kind of epibolic gastrula; while the true gastric cavity, as distinct from the gastrovascular, is formed by an invagination, and deserves therefore to be regarded as a form of stomodaeum.
In the next phase of segmentation the granular layer surrounding each segment again forms a protuberance at the formative pole, but, instead of each segment becoming divided into two equal parts, the protoplasmic protuberance alone is divided off from the main segment. In this way sixteen spheres become formed, of which eight are large and are formed mainly of the yolk material of the inner part of the ovum, and eight are small and entirely composed of the granular protoplasm. The eight small spheres form a ring on the formative surface of the large spheres .
Without attempting to decide between the above views, we shall speak of the pole at which the mouth is formed as the oral pole.
The formation of the alimentary cavity commences shortly after the complete investiture of the embryo by the epiblast cells. At the oral pole an invagination of epiblast cells takes place , which makes its way towards the opposite pole. More especially from the figures given by Agassiz, and from the explanation of his plates, it would seem that a large chamber is formed in the hypoblast at the end of the invaginated tube, into which this tube soon opens . The invaginated tube would seem to give rise to the so-called stomach, while the chamber at its aboral extremity is no doubt the infundibulum, which as may be gathered from Kowalevsky's statements, is lined by a flattened epithelium. At a later period the gastrovascular canals grow out from the infundibulum as four pouches, which are surrounded by, and grow at the expense of, the large central cells, which have in the meantime arranged themselves in four masses, and appear to serve as a kind of yolk. The nuclei of these large cells according to Kowalevsky disappear, and the cells themselves break up into continually smaller masses.
The main difficulty in the above description of Agassiz is the origin of the infundibulum. In the absence of definite statements on this head it seems reasonable to conclude that it arises as a space hollowed out in the central cells, and that its walls are formed of elements derived from the yolk cells. On this interpretation the alimentary canal of the Ctenophora would consist, as in the Acraspedote Medusae and Actinozoa, of two sections: A true hypoblastic section consisting of the infundibulum and the gastrovascular canals derived from it; and an epiblastic section--the stomodaeum--forming the stomach.
Chun gives a short statement of his observations, which accords with the interpretation in the text.
The observations of Kowalevsky on the alimentary system do not wholly tally with those of Agassiz. He finds that the oral side of the embryo becomes hollowed out, and that the hollow, lined by flattened cells, becomes constricted off as the infundibulum, from which the radial canals subsequently grow out. To the infundibulum there leads a narrow canal lined by a columnar epithelium which becomes the gastric cavity.
While the alimentary canal is becoming formed a series of important changes takes place in other parts of the embryo. The rows of locomotive paddles first appear as four longitudinal equidistant linear thickenings of the epiblast near the aboral pole . On the projecting surface of these ridges stiff cilia appear which coalesce together to form the paddles. While the embryo is still within the egg the rows of paddles are quite short and also double. There are in Pleurobrachia about eight or nine pairs of paddles in each row. Each double row eventually separates into two.
In all the forms except the Eurostomata two tentacles grow out as thickenings of the epiblast . They are placed at the opposite poles of the long transverse axis of the embryo.
A process of the contractile gelatinous tissue of the body, the origin of which is described below, makes its way, according to Kowalevsky, into the tentacles.
The central apparatus of the nervous system and the otoliths are formed at the aboral pole from a thickening of the epiblast, but the full details of their formation have not been elucidated. It may be well to preface my account of their development with a short statement of their adult structure.
They consist in the adult of a vesicle with a ciliated lining situated at the bifurcation of the two anal tubes, and of certain structures connected with this vesicle. From the floor of the vesicle is suspended a mass of otoliths by four leaf-like bodies known as suspenders. The roof is very delicate and has the form of a four-sided pyramid. Six openings lead into the vesicle. Through four of these, placed at the four corners, there pass out four ciliated grooves continuous with the suspenders. These grooves, after leaving the otolithic vesicle, bifurcate and pass to the eight rows of paddles. At the two sides the walls of the vesicle are continuous with two thickened ciliated plates with swollen edges, opposite the centres of which are two lateral openings into the vesicle, completing the six openings. Through the lateral openings the sea-water is driven by the action of the cilia of the plates.
The development of these parts is as follows--In the aboral thickening of epiblast a cavity makes its appearance, the walls of which constitute the rudiment of the otolithic vesicle . The roof of the cavity is extremely delicate. On each side of it a thickening of cells becomes established, regarded by Kowalevsky as the rudiment of the nervous ganglia. These thickenings appear to give origin to the lateral ciliated plates. The otoliths arise from cells at four separate points at the corners of the ciliated plates opposite the rows of paddles .
In Pleurobrachia there is at first only one otolith at each corner. The otoliths are gradually transported towards the centre of the vesicle and are there attached, though the four leaf-like suspenders do not arise till very late. The otoliths go on increasing in number throughout life.
Add to tbrJar First Page Next Page