bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Soil and Water Pollution : Presented to the American Public Health Association at New Orleans Dec. 1880 by Runnels M T Moses Thurston

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 113 lines and 19940 words, and 3 pages

Transcriber's Notes:

SOIL AND WATER POLLUTION

PRESENTED TO THE American Public Health Association,

AT NEW ORLEANS, DEC. 1880.

BY MOSES T. RUNNELS, M. D.,

INDIANAPOLIS.

CHICAGO: DUNCAN BROTHERS. 1880.

SOIL AND WATER POLLUTION.

There is no subject of greater interest to the people than that of health and the best means of obtaining it. Plenty of wholesome food, good air and pure water constitute the first essentials of right living. Any thing which contaminates these prime requisites admits a factor into the problem of life which seriously vitiates its result. To what extent agents of adulteration have injured the human family by disease and death we do not know, but the usual estimate made by sanitarians is, that nearly one-half of the existing diseases might be abolished, provided that individuals and communities should enter upon correct modes of living. In the United States over one hundred thousand persons die annually, and probably one hundred and fifty thousand persons are constantly sick from causes well known to be preventable. Dr. Draper says the total number of deaths in Massachusetts during five years, 1869-73, from all causes was 156,289; of that number the deaths from zymotic or fermentable diseases comprised 26 per cent.; those from acute pulmonary diseases were 7 per cent.; and those from phthisis, 17 per cent. So that, if we include all these among the "preventable" diseases, the deaths from these causes represent one-half the actual mortality. It is estimated that the productive efficiency of the average life in this country might be increased 30 per cent.; or up to the normal amount by the proper observance of health laws. The annual mortality rate should not exceed 15 per 1,000 in cities under good sanitary management, but the tables of the National Board of Health show a greater mortality in almost every city of the country. Zymotic or preventable diseases are increasing in Indianapolis. From these diseases 443 deaths occurred in the city during the year 1879--over 32 per cent. more than in 1878--and if such a large number died, it is fair to calculate that twenty times as many persons were more or less sick from the same causes. Nearly 33 per cent. of the total deaths of the city last year were due to zymotic diseases. These facts should awaken the public to thorough search for the causes at work producing such a high mortality.

I believe, and it shall be my endeavor to prove, that the increase of zymotic diseases in the city is due in a great measure to causes easily preventable. Man, it is true, is born to sorrow; but many of these sorrows are of his own creation, or are due to his neglect of established principles. Having determined upon a thorough investigation, we need only to visit the premises, where typhoid fever, scarlet fever, diphtheria, and diseases of this class prevail, to obtain facts enough to solve the problem. Wherever filth abounds, whether in the air, the ground, or the water, there will be a fruitful soil for the propagation of fermentative diseases. To be convinced of the present and past filthy condition of the city, one should take a walk through any of the alleys at noonday, and inhale the foul odors arising constantly from sewers, cess-pools, privies and decaying animal, vegetable, and excrementitious matters thrown out from kitchens and stables. An examination of the kitchen and back yard of a house is sufficient to prove one of two things, either that Biddy is "monarch of all she surveys," or that the family need a few practical lessons on sanitary science. The latter are sure to follow in time.

The increase of zymotic diseases in Indianapolis, is due largely to soil and water pollution. The conditions of the soil affect our health through the water we drink and the air we breathe. To effluvia from the soil, may be attributed, as stated by Parkes, paroxysmal fevers, typhoid fever, yellow fever, bilious remittent fever, cholera and dysentery. Waring accepts the theory of the dissemination of typhoid fever by fecal discharges of the sick, but gives as his opinion that the disease may be developed by exhalations of decomposing matters in dung-heaps, pig sties, privy vaults, cellars, cess-pools, drains and sewers, or it may be due to the presence of the poison deep in the ground, and its escape in an active condition in ground exhalations. A cold soil, and a misty, chilly condition of the atmosphere are caused by large amounts of water in the ground; and persons living on such soil are disposed to catarrhal complaints, rheumatism and neuralgia. Dampness of the soil produces malaria and consumption, and their activity varies with the degree of moisture. The lowering of the ground water in the malarious districts of Indiana, has greatly mitigated the paroxysmal fevers which were formerly so prevalent, and the general healthfulness of the state has been increased by drainage. The sandy soil underlying Indianapolis retains from 33 to 36 per cent. of water. A strong clay soil will not retain over 27 per cent. of water.

According to Pettenkofer, Ford and others, an excessive amount of water in the soil is injurious to health by the effects of dampness. It favors the decomposition of organic matter in the soil, and the evolution of unhealthy effluvia. The water is liable to become polluted, especially when it is the source of supply of water in wells used for drinking purposes. The soil is so damp in Indianapolis, that houses built close to the ground are known to be very unhealthy. At least four-fifths of all the houses in the city are too near the ground, to insure perfect immunity from dampness, and its blasting influences to health.

In the construction of dwellings, care should be taken to provide the most efficient means for excluding dampness from the foundation walls and basement floors; and the soil should be rendered drier by underground drainage. Fox says, it is very unwise to allow the soil close to houses to be defiled by filth; for the fires of a house creating a force of suction, draw into the house the air contained in the surrounding soil, as well as of that on which it is built. The popular impression, that the atmosphere ends where the ground begins, is a very widely spread delusion. Most soils are more or less porous. A house built on gravelly soil stands on a foundation composed of a mixture of two parts of small stones and one part of air. The air may give place to any gas or to water. Zymotic diseases have been known to arise from the emanations of soil polluted by excreta, and impurities from sewers and drains and all other filth. Poisoning by breathing the gases generated in sewers and cess-pools is not uncommon. In reference to this point, Dr. Jno. Simon says: "The ferments so far as we know them, show no power of active diffusion in dry air; but as moisture is their normal medium, currents of humid air can lift them in their full effectiveness, and if into houses or confined exterior spaces, then with their chief chances of remaining effective; and ill-ventilated, low-lying localities, if unclean as regards the removal of their refuse, may especially be expected to have these ferments present in their common atmosphere as well as of course teeming in their soil and ground water."

Indianapolis is in the bottom of a basin, the rim of which rises sixty or seventy feet all round it, east of White river; in some places as at Crown Hill to three times that height.

Let us now inquire into the condition of the soil of the city. We find that the general direction of the water trend is from northeast to southwest; that the water level in the wells near the Atlas works is thirty-five feet above the river level at the city water works; and that the waterfall is from fifteen to eighteen feet per mile. The formation of the ground beneath the city is attributed by geologists to the glacial drift of pre-historic times. From seventy to ninety feet below the surface the earth is built up of alternate beds of sand gravel, and clay, and go to show that at some remote period running water with its leveling and transforming power, aided by the corroding force of the air, contributed largely to the geological formation which we find to-day.

After obtaining the distances through these various strata in the different parts of the city, an average is calculated in the following order:

Loam, three to four feet; sand and gravel, thirty to forty feet; blue compact clay , twelve to eighteen feet; sand and gravel, five to ten feet; soft clay, one to five feet; and blue gravel and boulders to Devonian limestone, thirty-five to fifty feet. The first stratum of clay is very hard and tough, and for that reason is called "hard-pan." It has an inclination from the northeast to the southwest of about thirty feet to the mile. The further north and east of White river, the less distance it is to bed rock. Occasionally below the "hard-pan" is found a small drift of soft clay, but this is not usual and does not extend very far in area; often in moving ten feet it is missed. The first seam of water is usually reached at a depth of seventeen to twenty-five feet; the second seam at fifty to sixty-five feet; and the third seam at seventy to ninety feet.

Area of Indianapolis 5,000 acres.

Within the city limits there are:

Surface dug wells 15,000 Driven wells 5,000 Open privy vaults 22,000 Privy vaults filled up 13,000 Cess-pools 10,000 Cess-pools filled up 5,000

The builders of the city state, that in the business portion of the city, it is not uncommon to discover from three to a half dozen old privy vaults, in making a single excavation for an ordinary building.

According to the above estimate which is considered very low, 50,000 privy vaults and cess-pools are constantly filling the soil with deadly poisons, and polluting the water of at least 15,000 surface dug wells, which furnish drinking water to 50,000 people.

Not more than 6,000 persons drink water from the city water works, and about 20,000 persons use water from driven wells and cisterns. It is a rule well established by eastern boards of health, that a dug well drains a circular area with a radius equal to twice the distance of the depth of the well. It has been ascertained, that a very large number of the wells of the city are situated within an average distance of less than thirty feet of cess-pools and privy vaults, while a great many are distant from them not over ten feet. Most wells are dug simply with the view of obtaining water and of having it as convenient to hand as possible; the cess-pools are dug similarly, with a view to convenience except that the demand here is that the liquid contents shall readily drain away. Provided the well furnishes an abundance of water, and the cess-pool allows the liquid refuse to soak away, and on this account, seldom requires cleaning out, there is little concern as to what goes on unobserved beneath the surface of the ground. In the course of time the well water is discovered to be impure, after sickness, and perhaps death, have followed its use.

Wells situated on street corners in close proximity to the catch basin of the sewers, are extremely liable to pollution from leakage from the foul gutters and seepage from the catch basins.

A notable outbreak of typhoid fever occurred in Louisville, in the autumn of 1875, from the use of wellwater contaminated by a privy in an adjoining school yard. The water was found to be impure, and the well was condemned. "In the summer of 1878 some forty persons in Rochester whose supply of drinking water was derived from a certain well, were taken sick with typhoid fever and other zymotic diseases." The health officers closed the well and the people got water from other sources. They began to recover immediately.

"All authorities agree that any well situated within a few feet of a cess-pool or sewer should be regarded with grave suspicion, for the intervening soil may become overdone with filth at any moment, and cease to act as an efficient filter of the polluted water, and allow organic matter to enter the well; or animal filth may be washed into the well at any time by a hard rain."

A great many citizens of Indianapolis are drinking water exclusively from cisterns. It is difficult to estimate the number of cisterns within the city limits; but a great deal may be said in regard to the general unwholesomeness of the water they contain. Rain water contains a small proportion of chlorine, the amount varying with the condition of the atmosphere, and the purity of the shedding surface.

When pure rain falls upon a roof it carries down with it all the impurities accumulated there during dry weather; these soon putrify in the cistern, and infect the water.

The majority of the cisterns in the city are faulty in some particular--either proper care was not exercised in their construction, or the necessary repairs were not made in due time--and they are found to be seeping, or leaky. Sufficient attention is not given to keeping the cisterns well closed, and the result is that filth in large quantities is to be found on emptying them. During my examinations I have met with many cistern waters in the city so polluted by sewage infiltration, that an immediate interdict on their use appeared to be called for. Owing to the impurity of the soil, sewage matter finds its way into hundreds of cisterns, and contaminates the water. Many of our cisterns contain water rank with vegetable or animal impurity, and the contents of the greater portion of these are not above suspicion. Some of them are neither more or less than shallow wells, receiving more of their contents by percolation than by inflow above.

Last December 458 cisterns in Memphis, Tenn., were examined with the following result: Sound, 209; seeping, eighty-two; and undoubtedly leaking, 167. In the total number, there were 249 condemned as unfit for use. To what extent these leaky cisterns contributed to the epidemic of yellow fever we cannot tell. The probability of sewage contamination in each instance was strong.

In the year of 1879 there were seventy-eight deaths from typhoid and typho-malarial fevers in Indianapolis. It may be stated as a probable fact, that our siege of fevers in 1879 originated and was afterward propagated in polluted drinking water, and ill-ventilated apartments poisoned by sewer gases, or in close proximity to foul and overflowing water closets and cess-pools. Forty-three per cent. of the total deaths in the city in 1879 were deaths of children under five years of age. Among the general causes of the high death rate of infants, may be mentioned poverty and ignorance. These two conditions existing in the parents, are great enemies of the public health and are two important factors which go to make up this startling infantile mortality. But it must be conceded that typhoid fever, scarlet fever, diphtheria, measles, hooping cough and diarrhoeal diseases have been endemic in our midst as the result of foul air and polluted water. Deaths from these causes occur more or less at all ages, but distinctively more among children. The influence of filth causes the infants and young children to die at twice, or thrice, or four times their fair standard rate of mortality; and this disproportion seems to mark the young lives as finer tests of soil and water pollution than are the acclimated adults. The board of health of Indianapolis report that hundreds of cellars in this city are full, or partly full of water, the entire year; and that the increase of zymotic diseases is due largely to wet and damp cellars, as well as to the long continued and general practice of covering up foul privy vaults, after they have become full, to save the expense of removing the contents.

Being thoroughly impressed with the facts above enumerated, I commenced to make investigations. I employed a competent chemist, Mr. Jno. Hurty, to make sanitary examinations of water, and assist me in the work.

In the collection of samples of water, special care was exercised in regard to cleanliness and to avoid introducing any errors into our examinations. Below I give a tabular statement of the analyses of waters taken from surface dug wells in the city. Excepting the permanganate of potash test, the quantities are in one litre .

The permanganate of potash test given above was as follows: The test solution was distilled water, one litre, and permanganate of potash, one gramme. Of this solution, the number of drops required to render fifty cubic centimetres of the water under examination permanently red, were reported. It should be understood that the same quantity of distilled water required but eight drops of the test solution to become permanently red.

The first sample of water was taken from a well where fourteen persons were simultaneously attacked in December last by typho-malarial and diarrhoeal diseases. All had been drinking water from this well, and had it not been for the timely help of the physician who condemned the water.

SERIOUS RESULTS WOULD HAVE FOLLOWED.

Good water is both a necessity and a priceless blessing. Foul water is a scourge and a messenger of death. No one except a brute would hesitate which to choose if he could tell one from the other. It is only with the grosser pollution of water that chemists can apply their science. Infinitesimal pollution cannot be estimated by the skill of any chemist. It is the careful physician who decides more accurately in regard to the purity of water than the chemist. Sir Benj. Brodie in speaking of the detection of infinitesimal pollution says: "I think you have a much better chance of getting at these relations through accurate medical statistics, properly applied, than you have through chemical analysis, because chemical analysis is one of the poorest things possible to reach those delicate quantities. You cannot get at these small quantities at all; chemical analysis must be limited by our power of weighing and measuring. It may go on to a certain point, but we cannot go beyond that point."

The well from which the second sample was taken, was within twenty-five feet of a privy vault twenty feet deep. Several families used water from the well. Two cases of

TYPHOID FEVER DEVELOPED

in one family, and all the persons who drank the water were constantly ailing. The third sample was taken from a well where four cases of typhoid fever had occurred. A thorough search had been made for the cause of the trouble. The well water had been suspected and was condemned by the attending physician.

Seventy feet from the wall there was a privy vault overflowing. Another vault was within twenty-five feet of the well. To the effluvia from the former was attributed one case of typhoid fever. The stench was so great at night that not even the windows in the upper stories of the houses in the neighborhood could be kept open. People living near had sore throats, malarial fever and diarrhoeal disorders.

The fourth sample was obtained from a surface dug well, from which the inmates of the State Female Reformatory were supplied with drinking water. Since the first of last August thirty-nine cases of well defined typhoid fever, and thirteen milder cases of the same disease appeared in the Reformatory. The attending physician attributed the outbreak of the fever to the water from the well. After a thorough chemical examination of the water, the well was condemned and filled up, and the water supply now comes from a driven well.

It is worthy of remark that the persons attacked by typhoid fever, had been daily drinking the foul water from the well until the appearance of the fever; that the immediate surroundings of the well and the sanitary condition of the building were good, and that no direct cause of typhoid fever outside of the well could be discovered.

The fifth sample was taken from a well which supplied a family of six persons with water. Diarrhoeal troubles,

SYMPTOMS OF TYPHOID FEVER,

sore throats, etc., were not uncommon, and the family physician was frequently consulted. One privy vault forty feet north from the well was full. Another privy vault was fifty feet northeast of the well. The contents of the vaults undoubtedly contaminated the well water to some extent, and of course the evil would be increased with time.

The sixth sample was drawn from a well on the south side of the city. No privy vault or cess-pool is located within fifty feet of it. To all appearances the surroundings are good. The well water has been used for drinking purposes for several years. One person in the family had typhoid fever three years ago, and malarial and bilious attacks have annoyed the other members of the family frequently.

The seventh sample was obtained from a well from which three cases of typhoid fever had previously been supplied with water. The attending physician attributed the development of the disease to the unwholesomeness of the water.

The eighth sample was obtained from one of the wells at the water works.

The following table gives the analyses of waters from driven wells extended below the first or second stratum of clay. These wells are located in different parts of the city. Excepting the permanganate of potash test, previously explained, the quantities are in one litre.

I have in my possession partial and complete analyses by Prof. E. T. Cox, of waters from nine other driven wells in the city. The analyses show that these wells furnish good potable water.

Add to tbrJar First Page Next Page

 

Back to top