bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Magic Pretended Miracles and Remarkable Natural Phenomena by Anonymous

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 165 lines and 33134 words, and 4 pages

Not many years ago, a man named Chaubert professed to be incombustible; but it has been proved that the human body is capable of bearing a very high degree of heat. Men of unquestionable integrity have surpassed all his wonders. Sir Charles Blagden exposed himself in a heated room where the heat was one or two degrees above 260?, and remained eight minutes in this situation. Eggs and a beef-steak were placed on a tin frame, near the thermometer, and in the space of twenty minutes the eggs were roasted quite hard, and in forty-seven minutes the steak was not only dressed, but almost dry. Another beef-steak, similarly placed, was rather over-done in thirty-three minutes. Chantrey, the celebrated sculptor, accompanied by five or six friends, also entered a furnace, and, after remaining two minutes, brought out a thermometer which stood at 320?. Some pain was experienced in this experiment, but it placed beyond all doubt that the human body has a remarkable power of enduring heat. Chaubert excited much wonder by taking phosphorus into his mouth; but, as that substance, when deprived of air, will not burn, he always closed his lips, and retired to eject the phosphorus immediately afterwards.

We turn now from the resistance of heat by chemical means, to some striking examples of its power.

The name of the Giants' Causeway arose, probably, from an idea of the supernatural power, entertained in times of ignorance and superstition. And yet it is demonstrated that vast masses of rock are to be traced to causes strictly natural. Basalt is of very frequent occurrence on the surface of the globe, and is frequently detected in a variety of volcanoes, both extinct and active. The greatest mass of basalt hitherto observed is that in the Deccan, which constitutes the surface of many thousand square miles of that part of India. In other instances, it occurs in horizontal tabular masses, and is columnar. Sometimes, the basaltic columns are curved, and of this there is a beautiful example in the island of Staffa. Now basalt is not a crystalline substance, for as it is not capable, as all crystals are, of cleavage in the line of its planes, or at some angle with them, it is concretional. Its structure resembles an onion, or any bulbous root, for, in the centre, is a solid mass, about which are others just like the parts of the vegetable products already mentioned. These portions of basalt are at first of an oval form, and then they gradually become rudely hexagonal. Some non-columnar basalts show no trace of any particular arrangement of parts, while others have a globular structure, so that when the rock becomes much decomposed, it has the appearance of numerous bomb-shells and cannon-balls cemented together.

Here, then, we have an extraordinary effect of heat. Mr. Gregory Watt took seven hundred weight of the substance named rowley rag, kept it in fusion more than six hours, and cooled it so gradually, that eight days elapsed before it was taken from the furnace. The shape of the mass was uneven and while the thinner portion was, in consequence of more rapid cooling, vitreous, the thicker was stony; the one state passing into the other. Numerous spheroids were also formed, some being two inches in diameter. They were radiated with distinct fibres, the latter also forming concentric coats, when circumstances were favourable to such an arrangement. When the temperature had been sufficiently continued, the centres of the spheroids became compacted before they had attained the diameter of half-an-inch. When two spheroids came into contact, no penetration ensued; but the two bodies became mutually compressed and separated by a plane, well defined, and invested with a rusty colour. When several met, they formed prisms. In reasoning on these facts, Mr. G. Watt observes: "In a stratum composed of an indefinite number in superficial extent, but only one in height, of impenetrable spheroids, if their peripheries should come in contact in the same plane, it seems obvious that their mutual action would form them into hexagons; and if these were resisted below, and there was no opposing cause above them, it seems equally clear that they would extend their dimensions upwards, and thus form hexagonal prisms, whose length might be indefinitely greater than their diameters."

That the great power in operation in the formation of basaltic columns is heat, appears to be indisputable. There is, for example, a bed of sandstone in furnaces for smelting metals, and, in the course of time, it requires to be repaired. Portions, taken out, on such occasions, have been found to have a columnar appearance: the heat of the furnace having changed the form of the substance, not by any fusion of its parts, but by a peculiar arrangement of them, thus giving them the specified figure.

Another astonishing result of this natural power is seen in the eruption of a volcano. The eye of a traveller, perhaps, as it is turned towards Vesuvius, discerns a dark red spot on the mountain's side, issuing from an orifice near to the crater. But soon, that deep burning light apparently spreads out, or flows on into a long wide stream, descends the entire length of the great cone, and reaches to the plain below. But, as the first light was seen through and behind the mists which follow the departure of the sun, so now its extended influence is only rendered visible by the increasing gloom. But, as the eye is still attracted towards this remarkable eminence, a pillar of fire is seen rising up from the crater high into the air; while innumerable lights appear, like so many natural fire-works rushing upwards, and falling in a glowing shower, on the outer sides of the crater, which soon present the aspect of a heap of fire. Large and red-hot stones are flung forth from time to time, from the same troubled source, to fall, roll down the sides of the crater, and lose their brightness.

But some of the most remarkable examples are to be met with in the Spice Islands, or Moluccas. The pointed and conical mountains, which characterize this group of islands, exhibit great fertility. Nothing can surpass the richness of vegetation with which their sides are covered, nor the balmy healthfulness of the breezes that encircle round them, to temper the heats of the sultry zone. But the nature of these mountains is closely connected with volcanic action; so that, in fearful apprehension, we might look at each one of these beautiful peaks, as if it were destined one day to be torn from its station and thrown into the sea.

"I will stretch out mine hand upon thee, and roll thee down from the rocks, and will make thee a burnt mountain," was one of the Divine denunciations against Babylon, Jer. li. 25. Judgment has not thus fallen on Ternate, one of the most lovely of the cluster just adverted to; but the top of the highest rock has been torn off, and hurled from a height of five or six thousand feet, into the sea. A huge gap was left behind, which seemed to a traveller when standing on the edge, like a deep valley, or ravine, betwixt two mountains. As the portion rent away in this tremendous struggle was split into fragments of various sizes, there is, besides, a vast pile at the water's edge, a road, or causeway, strewed with half-vitrified pieces of rock and cinders, from the margin of the rift to the declivity of the mountain; so that the island, so lovely under other aspects, presents on this side a fearful scene of desolation. What a striking comment on the words, "I will make thee a burnt mountain;"--I will tear off thy summit, shiver it into ten thousand pieces, and therewith overwhelm and destroy the natural verdure of thy sides, which once looked so goodly and so fair! Some time in March, 1839, another eruption took place at Ternate; so that, long before these ejected matters could yield to the decomposing action of the atmosphere, and afford a soil for vegetable growth, another layer, of equally forlorn and broken kind, was scattered over them.

In connexion with these astounding phenomena, it may be remarked that an apparatus has recently been contrived called the fire-annihilator, the origin of which is not a little curious. It is said that the inventor observed that the smoke hovering over a burning mountain diminished its fury, and that, on analysing it and combining similar elements, he discovered the means of extinguishing fires, and thus of arresting at the outset what might otherwise prove a tremendous calamity.

The blow-pipe has immense power. Two volumes of hydrogen, and one of oxygen gas, when pure, form a mixture which produces in this instrument intense heat, and most substances may be fused by the flame. In the experiments of Dr. E. Clarke, lime, strontion, and alumine, yielded to its powers. The alkalis were fused and volatilized almost the instant they came into contact with the flame: and rock crystal became a transparent glass full of bubbles. Opal changed into a pearly white enamel, and flint into one that was frothy. Blue sapphire was melted; and Peruvian enamel changed into a transparent and colourless glass. Lapis lazuli fused into transparent glass, with a slight tinge of green. Iceland spar, next in difficulty, as to fusion, to its native magnesia, melted at last into a limpid glass, giving out an amethyst-coloured flame. Diamond first became opaque, and was then gradually volatilized. Gold, mixed with borax as a flux, was fused; platina wire melted the instant it was brought into contact with the flame, and ran down in drops; brass wire burned with a green flame; and iron wire with brilliant sparks.

At a recent meeting of the British Association, Dr. Faraday exhibited some diamonds, which he had received from M. Dumas, which had, by the action of intense heat, been converted into coke. In one case, the heat of the flame of oxide of carbon and oxygen had been used; in another, the oxyhydrogen flame; and, in the third, the galvanic arc of flame from a Bunsen battery of one hundred pairs. In the last case, the diamond was perfectly converted into a piece of coke; and, in the others, the fusion and carbonaceous formation were evident. Specimens in which the character of graphite was taken by the diamond were also shown. The electrical characters of these diamonds were stated also to have been changed, the diamond being an insulator, while coke is a conductor.

A rope, nearly three miles long, was recently lying on the verge of the borough of Gateshead, which was shortly before a stone in the bowels of the earth. Smelted, the stone yielded iron. The iron was converted into wire. The wire was brought to the wire-rope manufactory of Messrs. R. S. Newall and Co., at the Teams, near Gateshead, and there twisted into a line 4,660 yards long. It was supposed to be the stoutest rope of the kind that was ever made. It weighs twenty tons, five hundredweights, and cost the purchasers upwards of ?1,134. It was intended for the incline on the Edinburgh and Glasgow Railway, near the latter city. A rope of hemp of equal strength would weigh thirty-three tons and-a-half, and cost about three hundred pounds more. It would also entail greater expense while in operation, and would sooner wear out.

Mr. J. Wishaw has lately shown the advantages arising from the application of currents of heated air to the following purposes: seasoning timber, generally; preserving timber, purifying feathers, blankets, clothing, etc.; drying coffee, roasting coffee, japanning leather for table-covers, and other purposes; drying silks, drying yarn, drying distillers' tuns, drying papier-m?ch?, and drying vulcanized india-rubber. The process has also been successfully tested for drying loaf-sugar, drying printing-paper, or setting the ink, to enable books to be bound more quickly than usual; drying starch, and converting it into dextine, or British gum; and preserving meat. It has been also stated, that sixty suits of clothes, which had belonged to persons who had died of the plague in Syria, had been subject to the process of purification, at a temperature of about 240?, and afterwards worn by sixty persons; not one of whom ever gave the slightest symptom of being affected by the malady. In describing these processes, the writer referred to the mode adopted by the North American Indians for preserving the meat of the buffalo--that of drying it in the sun; and stated that heated currents had been applied successfully. The discovery seems highly important for shipping; as, instead of sailors consuming salted provisions from one month's end to another, they might thus have an occasional supply of fresh meat. Meat treated in this way occupies much less space, too, and is much lighter in weight. It is believed that the juices of the meat contain about seven-eighths of watery moisture: this, the current of heated air removes, leaving the albumen and all the flavour and nutrition behind.

That in the production of steam heat is of incalculable value, there needs no proof. We derive special advantage from it, in the results of that machinery which astonish us by their magnitude, as well as by their elegance. Steam wafts us, in a few hours, from one extremity of the land to the other, and renders America, once called the New World, accessible in a few days.

The magic swan--Properties of the magnet--The mariners' compass--The process of magnetizing--The dip of the needle--Magnetic properties in various substances.

A magician of former days had a figure of a swan, which floated on a vessel of water, round the rim of which were placed the twenty-four letters of the alphabet. Addressing the spectators, he was accustomed to ask for a name to be given him, and it was correctly spelt by the swan, as it moved from one letter to another till it had indicated the whole. A little philosophy, in this instance, produced repeatedly great astonishment. A magnetic bar was placed in the swan, and the performer had a powerful magnet concealed in his own dress, and the swan, of course, followed his motions. Thus, if he wanted the swan to spell "Selina," he moved first to S, then to E, and so on, through the successive letters of that name, till the word was spelt. On one occasion, however, the performer was not a little disconcerted--the swan stopped in its course and refused to move. Again and again the effort was made, but it was utterly in vain; the magician could only acknowledge that some person was in the room aware of his secret, and counteracting his movements. Sir Francis Blake Delaval avowed himself to be the person: he produced a magnet which he had used on facing the performer as he stood at the table; the swan was, therefore, placed between two attractive instruments, and, of course, remained immovable.

A magnet may be described as a piece of iron, which possesses the property of turning towards the poles of the earth. This extraordinary quality does not necessarily belong to all specimens of iron in its native state, but only to one kind or variety called the oxide, on account of its union with oxygen in a particular condition. The possession of a special quality in this ore of iron was not discovered from its polarity, or power of turning to the poles of the earth, but from its property of attracting small pieces of iron, which are not magnetic; and hence it was called the loadstone.

There are many uses to which the magnet has been applied, and there is a probability of its being much more extensively employed; but its most important application is in the construction of the mariners' compass, which renders it possible freely to traverse the ocean. There has been some controversy as to the discovery of the directive power of the magnet, and the invention of the compass. It was once supposed to have been unknown until about the thirteenth century, but it is now generally acknowledged that the Chinese were acquainted with the compass at least eleven hundred and fourteen years before the birth of Christ. At the commencement of the thirteenth century, it was certainly in use in Europe; for cardinal de Vitty mentions it with some particularity, in a work entitled "The History of the East," where he says, "The iron needle, after contact with the loadstone, constantly turns to the north star, which, as the axis of the firmament, remains immovable, while the others revolve; and hence it is essentially necessary to those navigating on the ocean." This shows that the compass was not invented in Europe, as commonly believed, by Gioia, a pilot, and a native of Pasitano, a small village, situated near Amalfi, who lived about the end of the thirteenth century, but, by him, it appears to have been made fully available for the purposes of navigation.

In addition to the properties already mentioned, the loadstone has the power of communicating its virtues to any piece of hard iron or steel, and that, without diminution of strength; so that, if but one piece had been discovered, it would have been sufficient for the production of all the magnets that have ever been formed by man. Other means may be adopted of accomplishing this purpose. Take a bar of iron, and, striking it several times with a hammer, it will become magnetic. This experiment may be performed with a common poker. The magnetism thus communicated to a steel bar will be much increased in power, if it be supported on another bar during the process of hammering.

Gay Lussac, a French chemist of great celebrity, discovered a method of making magnets by a process so simple, that it may, in all cases, be applied successfully. Take a piece of thin iron wire and suspend it in a vertical position. The earth itself being a magnet, induces a magnetic power in the wire. To render this permanent, twist the wire till it breaks, and a magnet will be obtained.

Mrs. Somerville, well known for her excellent philosophical works, made some experiments on the effect of solar light in the production of permanent magnetism. If half of a small sewing needle be covered with paper, and the exposed part be placed in the violet or indigo ray, magnetism will be induced, and the same effect will be produced in a smaller degree by the blue and green.

To describe but one more mode; magnets are readily made by what is called the single touch, and this is perhaps the most simple and most effective way of proceeding. Place the steel bar to be magnetized on a table, or any other convenient place, and, as nearly as possible, north and south, which position is called by philosophers, the magnetic meridian. This being done, draw over it perpendicularly a strong magnet. In this operation, it is necessary to begin at one end of the bar, and draw the magnet over its entire length, and then again in the same direction. It must not be drawn backward and forward, for the power communicated in one direction, would be destroyed by an opposite motion.

The following experiments are very instructive:--Suspend a magnetic needle by a silk cord, so that it will hang in a horizontal position. Then bring it over the centre of a large magnet lying upon a table, and it will still retain its position; but, as it is brought near to either end, it will be bent downwards, and, at the extremities, will be vertical. This experiment illustrates what is called the dip of the magnet. On the equator of the earth, the needle is horizontal, or nearly so, but as it is brought near the poles it dips, and over either magnetic pole would be vertical. The reason of this is evident from the former experiment: at the equator, each pole of the needle is attracted in an equal degree by the north and south poles of the earth; but, if we proceed northward, the north pole of the magnet will be more attracted than the south, and point towards it until at last it becomes vertical. The poles of the earth's rotation, that is, the points which would form the terminations of its axis, did it revolve on one, are not the magnetic poles; nor is the equator of the earth the magnetic equator. They do not, however, greatly vary.

This paper contains two separate sets of experiments, the first of which relates to the attraction the magnetic needle has for various mineral, vegetable, and animal substances: and it is not a little remarkable that antimony and bismuth, as well as copper, tin, and cadmium, are, in these experiments, shown to have attractive powers for the magnetic needle; though, in those made by Dr. Faraday, he has ranged them amongst the class of dia-magnetics, that is, of those that exhibited repulsion. Arsenic, too, which he found so intractable, was made, in the present experiments, to assume the real magnetic character, that is to say, the power of attracting and repelling, by being kept for a short time in contact with a bar magnet. Iodine, likewise, was found, on bringing it near the needle, to be able to attract it.

In most of these experiments, the needle was made to attach itself to the substances by being forced towards them by a magnet, which was gently withdrawn after contact was so effected. In this way, and by a reference to the degrees of the compass traversed by the needle, a hair of the head, or a spark of diamond, can be accurately measured. The strength of the needle in its movement on a pivot was ascertained by azimuths, of which a detailed account is given.

The remainder of the memoir, which is contained in a supplementary number of the Magazine, is devoted to a detail of about five hundred experiments, in which non-ferruginous needles were made, by a modification of the magnetic needle, of which they formed a portion, to attach themselves to the same substances as in the preceding experiments. Thus, for instance, needles of most of the remarkable metals, as well as of glass, were found to have a strong affinity for nearly every kind of substance, whether mineral, vegetable, or animal, if its density was greater than that of cork or charcoal. Brass surpassed all the metals in its power of attraction, and, what is most remarkable, the magnetic needle was the lowest of all in the scale, showing not much more than one-third of the attractive energy of soft iron. Every substance of a crystalline or vitreous character exhibited remarkable magnetic properties, and this could not be mistaken, as it might be heightened at pleasure by contact with either pole of a powerful magnet. Towards the close of the experiments, the curious discovery was made, that needles of ivory, mother-of-pearl, tortoise-shell, horn, etc., were singularly magnetic, and this is traced to the albumen and gelatine they contained; and the inference is drawn, from this and other facts, that the cohesive, adhesive, and viscous properties of bodies are owing to real magnetic qualities, and that, by drying, albuminous, gelatinous, and glutinous fluids constitute various kinds of glass, which view is supported by what takes place with the gelatinous hydrate of silicium.

"The preceding experiments," says the writer, "include a vast variety of substances in the mineral, vegetable, and animal kingdoms, that exhibit such strong attractive affinities for one another, that, however much they may differ in their external appearances, and in their very natures, they are bound together by common bonds that connect them all into a single family; for we find the metal attaching itself to crystalline, animal, and vegetable substances; and, again, the crystal, whether we call it by the name of diamond, salt, or sugar-candy, connecting itself readily to metallic, animal, and vegetable bodies. In a similar way, animal bodies attach themselves to those that are mineral and vegetable; and, to complete the circle, the vegetable kingdom, by its woods, its gums, its lac, and its resins, is connected with them all."

The electrical kite--Candles magically lighted--St. Elmo's fire--The chronoscope--The electric clock--The electric telegraph--Sub-marine telegraphs--The overruling providence of God.

In the auto-biographical memoirs of sir John Barrow, lately published, he says, when describing some of the employments of his youth: "I had fallen in with an account of Benjamin Franklin's electrical kite, and a kite being a very common object with school-boys, and a string steeped in salt-water with a glass-handle to it not difficult to be had, I speedily flew my kite, and obtained abundance of sparks . An old woman, curious to see what I was about, was too tempting an opportunity to not to give her a shock, which so frightened her, that she spread abroad in the village that I was no better than I should be, for that I was drawing down fire from heaven. The alarm ran through the village, and my poor mother entreated me to lay aside my kite."

It was recently announced by a professor of magic, that several hundred candles would be lighted by one pistol shot. Accordingly, the stage appeared in partial darkness, but, through the gloom, ranges of candles might be indistinctly perceived at different heights from the floor; and, in a minute or two, the performer was seen to enter and discharge a pistol, when all the candles were instantly ignited, and the array of magical instruments appeared strongly illuminated, ready to be employed in the subsequent exploits--an effect always followed by enthusiastic acclamations. And yet there is no difficulty in explaining this prodigy. Candles, carefully prepared to ignite readily, might have above them an arrangement of wires, with the point of a wire just over each wick, and the whole being connected with an electrical battery, they could be ignited instantly, at a moment's notice. The instant of the performer's entering, might be the signal for the discharge of the battery by others, and the report of the pistol would prevent any sound being heard on the removal of the wires, which the previous darkness had effectually concealed.

Lord Napier says, that when he was in the Mediterranean, some years ago, and during an awful thunderstorm, he was retiring to rest, when he heard suddenly a cry, from those aloft, of "St. Elmo and St. Anne!" which induced him again to go on deck. On observing the appearance of the masts, the maintop-gallant-mast-head was completely enveloped in a blaze of pale phosphoric light; the other mast-heads presented a similar appearance; the flame preserving its intensity for eight or ten minutes, and then gradually becoming fainter. Yet this appearance, which superstition declared to be miraculous, was only electrical; for, while the solar heat is converting into vapour the water and moisture of the earth, electricity is freely disengaged. "The clouds which this power forms are in different electrical conditions, though the electricity of the atmosphere, when serene, is invariably the same. Hence the descent of clouds towards the earth, their mutual approach, the force of atmospherical currents, and the ever-varying agencies of heat and cold convert the a?rial envelope of the globe into a complete electrical apparatus; spontaneously exhibiting, in a variety of forms, the play of the conflict of its antagonist powers. At the close of a sultry day, and above level plains, the opposite electricities of the earth and the air effect their re-union in noiseless flashes of lightning, illuminating, as it were, in far-spread sheets, the whole circuit of the horizon, and the entire canopy of the clouds. At other times, the same elements light up the arctic constellations with their restless wildfires--now diffusing their phosphoric flame, and flitting around in fitful gleams, and now shooting up their auroral columns, advancing, retreating, and contending, as if in mimicry of mortal strife."

That electricity and magnetism are identical, is evident from many experiments. If a sewing-needle be placed in a wire, twisted in that form called a helix, and a shock of electricity be then passed through it, from a Leyden jar, the needle will be magnetized. The form of the wire, and the manner of placing the needle, are shown in the figure.

Again, if M be a piece of soft iron, of a horse-shoe shape, and surrounded with copper-wire covered with a non-conducting substance, it will become powerfully magnetic on connecting the ends of the wire with a galvanic battery. If this be only of a moderate size, and a keeper, I, be attached to M, it will suspend W, representing a very heavy weight.

The electric telegraph may be said to have originated in a trivial incident. It occurred to professor Oersted, of Copenhagen, to try the effect of a galvanic current on the needle of the compass. He found it, on making the experiment, deflected, that is, turned aside from its usual bearing of due north and south. Professor Wheatstone applied this result very ingeniously. He arranged a series of needles, mounted like that of the compass, and found that he could turn any of these aside by galvanic currents, while the others remained at rest. It was evident, therefore, that if each needle were supposed to denote a letter, any letters might thus be indicated; and, consequently, if an arrangement of needles standing for so many letters, respectively, were placed at the distance of fifty or a hundred miles, and any of them were acted on by means of wires traversing the distance, a message could be despatched at one end of the line, and read off at the other from the deflected needles, by any person duly acquainted with the arrangement. A similar set of needles at the opposite end, would enable him, as certainly, to transmit a reply.

The engraving represents the front of the telegraph, exhibiting the index, as it is denominated. The wires, which are suspended through the length of the line, are attached at either end to the telegraphic instruments, a branch wire being fastened to a large metallic surface, imbedded in the earth for completing the electric current. When at rest, the handles are down, and the pointers remain in their vertical position. The signals are given by two magnetic needles, or pointers, each suspended vertically on an axis passing through the dial, and, behind, another pointer is fixed on each corresponding axis. A portion of the conducting wire, many yards in length, is coiled round the galvanometer frame, in which the magnet moves, so as to subject the magnet to the multiplied deflecting force of the electric current.

The conducting wires are, at their ends, of less diameter, and are so arranged as to form the coiled magnets. Those in the diagram are seen in connexion with the works; the electric current, taking the course indicated by the arrows, occasions the deflection of the needle.

That communications by this means may often be of great importance, is evident, from many newspaper paragraphs. The following appeared in the early part of 1847: "On Friday evening the following message was received at the Chesterfield station: 'Tell Derby, a Mr. H. has escaped from the York Asylum, and is supposed to have fire-arms about his person. Search all the trains from York. He is tall, has a crooked nose, and has a green coat with pockets at the side. Tell the police to look out.' To this message another succeeded from Leeds: 'He is caught at Leeds; they have him quite secure.'"

An establishment has lately been opened near the Bank of England, in which telegraphic intelligence may be despatched, or received, in all the principal towns of our country. The difficulties which have existed in reference to sub-marine telegraphs appear to have been overcome; for the time occupied from the commencement of carrying the telegraph across Portsmouth harbour, and transmitting signals, does not occupy a quarter-of-an-hour. The telegraph, which has the appearance of an ordinary rope, is coiled into one of the dockyard boats, one end of it being made fast on shore; and, as the boat is pulled across, the telegraphic rope is gradually paid out over the stern, its superior gravity causing it to sink to the bottom immediately. The telegraph consists of but this line; and, unlike those along the various railways, requires no return wires to perfect the circuit. The electric fluid is transmitted from the batteries in the dockyard, through the submersed insulated wire to the opposite shore; the fluid returning to the negative pole through the water without the aid of any metallic conductor, except a short piece of wire thrown over the dockyard parapet into the water, and connecting it with the batteries. The fact of the water acting as a ready return conductor, is established beyond question. In 1842, Mr. Snow Harris, when proving the efficiency of his lightning-conductors in his experiments from this dockyard to the Orestes, exemplified that water would serve to complete the electric circuit. On that occasion, the distance traversed by the return current through the water was but trifling compared with the space accomplished in the present instance. The batteries used are Smee's; and a very delicate and accurate galvanic detector, invented by Mr. Hay, the chemical lecturer of the dockyard, has also been brought into requisition. Independent of the simplicity of this sub-marine telegraph, it has an advantage which even the telegraphs on land do not possess--in the event of accident, it can be replaced in ten minutes.

At the last meeting of the British Association, the chairman, sir R. H. Inglis, thus adverted to the progress of the electric telegraph, from a report presented to the Legislative Council and Assembly of New Brunswick, relative to a project for constructing a railway, and with it a line of electro-magnetic telegraph, from Halifax to Quebec:--

"The system is daily extending. It was, however, in the United States of America that it was first adopted on a great scale, by professor Morse, in 1844; and it is there that it is now already developed most extensively. Lines for above thirteen hundred miles are in action, and connect those states with Her Majesty's Canadian provinces; and it is in a course of development so rapid that, in the words of the report of Mr. Wilkinson to my distinguished friend, his excellency sir W. E. Colebrook, the governor of New Brunswick, 'no schedule of telegraphic lines can now be relied upon for a month in succession, as hundreds of miles may be added in that space of time. So easy an attainment does such a result appear to be, and so lively is the interest felt in its accomplishment, that it is scarcely doubtful that the whole of the populous parts of the United States will, within two or three years, be covered with a net-work, like a spider's web, suspending its principal threads upon important points, along the sea-board of the Atlantic on one side, and upon similar points along the lake frontier on the other.' I am indebted to the same report for another fact, which I think the association will regard with equal interest:--'The confidence in the efficiency of telegraphic communication has now become so established, that the most important commercial transactions daily transpire, by its means, between correspondents several hundred miles apart. Ocular evidence of this was afforded me by a communication a few minutes old between a merchant in Toronto, and his correspondent in New York, distant about six hundred and thirty-two miles.' I am anxious to call your attention to the advantages which other classes also may experience from this mode of communication, as I find it in the same report:--'When the Hibernia steamer arrived in Boston, in January, 1847, with the news of the scarcity in Great Britain, Ireland, and other parts of Europe, and with heavy orders for agricultural produce, the farmers in the interior of the states of New York, informed of the state of things by the magnetic telegraph, were thronging the streets of Albany with innumerable team-loads of grain, almost as quickly after the arrival of the steamer at Boston, as the news of that arrival could ordinarily have reached them. I may add that, irrespectively of all its advantages to the general community, the system appears to give already a fair return of interest to the individuals or companies who have invested their capital in its application.'"

Professor Morse states, as the result of improvements in this telegraph, the president's message, entire, on the subject of the war with Mexico, was transmitted with perfect accuracy at the rate of ninety-nine letters per minute. His skilful operators in Washington and Baltimore printed these characters at the rate of ninety-eight, one hundred-and-one, one hundred-and-eleven, and one of them actually printed one hundred-and-seventeen per minute. He must be an expert penman who can write legibly more than one hundred letters per minute; consequently, this mode of communication equals, or nearly equals, the most expeditious mode of recording thought!

In doing so, we are reminded of the words of the psalmist:--"Thy faithfulness is unto all generations: thou hast established the earth, and it abideth. They continue this day according to thine ordinances: for all are thy servants," Psa. cxix. 90, 91.

The constancy of nature, thus so clearly indicated, is illustrated by ordinary experience. The child who flies his kite in the air, or places his little ship on the surface of the stream, or gathers together the dry leaves to make a blaze, yea, even by the food that he eats, and by his movements in his daily walks, proves that nature has laws, and that in them there is continuance. In after-life, the fact is still more obvious. Every day and every night bear their explicit testimony to it. Water finds its way to the ocean by a thousand channels; it is raised to the higher regions of the atmosphere to be dispersed in light and fleecy clouds over the four quarters of the globe; and, at length, accomplishes its circuit, by falling in showers on the dry and thirsty ground.

"It needs, however," says Chalmers, "the aid of philosophy to learn how unvarying nature is in all her processes--how even her seeming anomalies can be traced to a law that is inflexible--for what might appear at first to be the caprices of her waywardness, are, in fact, the evolutions of a mechanism that never changes--and that, the more thoroughly she is sifted and put to the test by the interrogations of the curious, the more certainly will they find that she walks by a rule which knows no abatement; and perseveres with obedient foot-step in that even course, from which the eye of strictest scrutiny has never yet detected one hair's-breadth of deviation. It is no longer doubted by men of science, that every remaining semblance of irregularity in the universe is due, not to the fickleness of nature, but to the ignorance of man--that her most hidden movements are conducted with a uniformity as rigorous as fate--that even the fitful agitations of the weather have their law and principle--that the intensity of every breeze, and the number of drops in every shower, and the formation of every cloud, and all the occurring alternations of storm and sunshine, and the endless shiftings of temperature, and those tremulous varieties of the air which our instruments have enabled us to discover, but have not enabled us to explain--that still, they follow each other by a method of succession, which, though greatly more intricate, is yet as absolute in itself as the order of the seasons, or the mathematical courses of astronomy. This is the impression of every philosophical mind with regard to nature, and it is strengthened by each new accession that is made to science. The more we are acquainted with her, the more are we led to recognise her constancy, and to view her as a mighty, though complicated machine, all whose results are sure, and all whose workings are invariable!"

Who is not filled with amazement in contemplating the power of the Almighty? Only let it be his will to set one of his agents loose, and the earth and all that it contains shall be burned up. Well may we tremble at the thought of that "wrath which is revealed from heaven against all ungodliness and unrighteousness of men!" On those who believe not, the curse of Jehovah abides. Would that men considered how fearful a thing it is to fall into the hands of the living God! Convinced by the Holy Spirit of their guilt and danger, they would then fly to the only hope set before them in the gospel.

The threatening of thy broken law Impress our souls with dread; If God his sword of vengeance draw, It strikes our spirits dead.

But thine illustrious Sacrifice Hath answered these demands; And peace, and pardon, from the skies, Came down by Jesus' hands."

It has been well remarked by Bacon, that "it is heaven on earth to live in charity, to turn upon the poles of truth, and to rest in Providence." The tenderness and minuteness of the Divine care are taught us by our Lord himself: "Fear not them which kill the body, but are not able to kill the soul: but rather fear him which is able to destroy both soul and body in hell. Are not two sparrows sold for a farthing? and one of them shall not fall on the ground without your Father. But the very hairs of your head are all numbered. Fear ye not therefore, ye are of more value than many sparrows," Matt. x. 28-31.

Let, then, all who are reconciled to God through the death of his Son, be comforted by this truth. God is not far from every one of us; the vast and the minute are alike under his control; and he has graciously promised that all things shall "work together for good to them that love God, to them who are the called according to his purpose."

In the ignorance and superstition of the human mind, applications are sometimes made to those who are supposed to be endowed with magical powers. Such practices are condemned in the Scriptures as vain and wicked. Hence, says the prophet Isaiah, "When they shall say unto you, Seek unto them that have familiar spirits, and unto wizards that peep, and that mutter: should not a people seek unto their God? for the living to the dead? To the law and to the testimony: if they speak not according to this word, it is because there is no light in them," Isa. viii. 19, 20.

Claims of the church of Rome to miraculous power--The Franciscans and Dominicans--Tale of bishop Remi--The effect of relics--Friars' pretended dispossession of evil spirits--Tragical event--Appearance of the virgin Mary to shepherds exposed--Pretended miracle of the Greek church.

Add to tbrJar First Page Next Page Prev Page

 

Back to top