Read Ebook: Australian Essays by Adams Francis
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 1868 lines and 61145 words, and 38 pages
Let us get a comprehensive view of the different kinds of tools necessary in a fully equipped shop.
PARTS OF LATHE.--The first thing of importance is the lathe, and of these there is quite a variety, and among the accompaniments are the slide rest, mandrel, back gear, division plate, angle plate, cone plate and various chucks.
There must also be change wheels, studs and quadrant plates, self-acting feed for surfacing and cross slide, and clamping nuts.
Drilling machines, both hand and power, hand and ratchet braces and breast-drill stocks.
CHISELS.--Chisels of various kinds, for chipping and cross-cutting; round-nosed, centering, set punches, tommies and drifts.
Back, tee and centering square; bevels, spirit level, inside and outside calipers, straight edges, rules and surface plates.
Gages for boring, scribing blocks, steel and brass scribes, stocks and dies, screw-plates, taps for bolts, reamers.
Files for various descriptions, countersinks, frame and hack saws.
GRINDING APPARATUS.--Emery wheel, cloth and paper, paper, flour emery, polishing powders, laps and buffs, and polishing sticks.
Forge, anvils, tongs, swages, punches, bolt tools, hot and cold chisels, blow-pipe, soldering iron, hard and soft solders, borax, spirits of salts, oil, resin and spelter.
To this may be added an endless variety of small bench tools, micrometers, protractors, arbors, collets, box tools and scrapers.
LARGE MACHINES.--The list would not be complete without the planer, shaper and milling machine, with their variety of chucks, clamps and other attachments, too numerous to mention.
The foregoing show what a wonderful variety of articles are found in a well-equipped shop, all of which can be conveniently used; but to the boy who has only a small amount of money, a workable set is indicated as follows:
A small lathe, with an 8-inch swing, can be obtained at a low cost, provided with a countershaft complete.
CHUCKS.--With this should go a small chuck, and a face-plate for large work, unless a large chuck can also be acquired. This, with a dozen tools of various sizes, and also small bits for drilling purposes.
The lathe will answer all purposes for drilling, but small drilling machines are now furnished at very low figures, and such a machine will take off a great deal of duty from the lathe.
As the lathe is of prime importance, never use it for drilling, if you have a driller, as it always has enough work to do for tuning up work.
BENCH TOOLS.--Of bench tools, a 3-inch vise, various files, center punch, two hammers, round and A-shaped peons, hack saw, compasses, inside and outside calipers, screw driver, cold chisels, metal square, level, straight edge, bevel square, reamers, small emery wheel and an oil stone, make a fairly good outfit to start with, and these can be added to from time to time.
Everything in the machine shop centers about the lathe. It is the king of all tools. The shaper and planer may be most efficient for surfacing, and the milling machine for making grooves and gears, or for general cutting purposes, but the lathe possesses a range of work not possible with either of the other tools, and for that reason should be selected with great care.
SELECTING A LATHE.--The important things about a lathe are the spindle bearings and the ways for the tool-holder. The least play in either will ruin any work. Every other part may be defective, but with solidly built bearing-posts and bearings, your lathe will be effective.
For this reason it will not pay to get a cheap tool. Better get a small, 6-inch approved tool of this kind, than a larger cheap article. It may pay with other tools, but with a lathe never.
Never do grinding on a lathe. The fine emery, or grinding material, is sure to reach the bearings; it matters not what care is exercised. There is only one remedy for this--overhauling.
COMBINATION SQUARE.--A tool of this kind is most essential, however small. It can be used as a try-square, and has this advantage, that the head can be made to slide along the rule and be clamped at any point. It has a beveling and a leveling device, as well.
The combination square provides a means for doing a great variety of work, as it combines the qualities of a rule, square, miter, depth gage, height gage, level and center head.
The full page illustration shows some of the uses and the particular manner of holding the tool.
MICROMETERS.--Tools of this description are made which will accurately measure work in dimensions of ten-thousandths of an inch up to an inch.
The illustration shows an approved tool, and this is so constructed that it can instantly be changed and set by merely pressing the end of the plunger as shown.
PROTRACTORS.--As all angles are not obtainable by the square or bevel, a protractor is a most desirable addition to the stock of tools. As one side of the tool is flat it is convenient for laying on the paper when drafting, as well as for use on the work.
The protractor has a graduated disk, and is adjustable so it can be disposed at any angle.
All special tools of this kind are serviceable, and the boy should understand their uses, even though he is not able for the time being to acquire them. To learn how they are applied in daily use is an education in itself.
UTILIZING BEVEL PROTRACTOR.--Examine the full-page illustration , and see how the bevel protractor is utilized to measure the angles of work, whether it is tapering heads or different kinds of nuts, or end and side surfacing, and it will teach an important lesson.
TRUING GRINDSTONES.--Devices for truing up grindstones are now made, and the illustration shows a very efficient machine for this purpose. It can be applied instantly to the face of the stone, and it works automatically, without interfering with the use of the stone.
It is frequently the case that an emery wheel will become glazed, due to its extreme hardness. This is also caused, sometimes, by running it at too high a speed. If the glazing continues after the speed is reduced, it should be ground down an eighth of an inch or so. This will, usually, remedy the defect.
SETS OF TOOLS.--A cheap and convenient set of precision tools is shown in Fig. 16, which is kept in a neat folding leather case. The set consists of a 6-inch combination square, complete center punch, 6-inch flexible steel rule center gage, 4-inch calipers, 4-inch outside caliper with solid nut, 4-inch inside caliper with solid nut, and a 4-inch divider with a solid nut.
THE WORK BENCH.--This is the mechanic's fort. His capacity for work will depend on its arrangement. To the boy this is particularly interesting, and for his uses it should be made full three inches lower than the standard height.
A good plan to judge of the proper height is to measure from the jaws of the vise. The top of the jaw should be on a level with the elbows. Grasp a file with both hands, and hold it as though in the act of filing across the work; then measure up from the floor to the elbows, when they are held in that position.
THE PROPER DIMENSIONS.--This plan will give you a sure means of selecting a height that is best adapted for your work. The regulation bench is about 38 inches high, and assuming that the vise projects up about 4 inches more, would bring the top of the jaws about 42 to 44 inches from the floor. It is safe to fix the height of the bench at not less than 34 inches.
This should have a drawer, preferably near the right-hand end of the bench. The vise should be at the left side, and the bench in your front should be free of any fixed tools.
HOW ARRANGED.--Have a rack above the bench at the rear, for the various tools when not in use, and the rear board of the bench should be elevated above the front planks several inches, on which the various tools can be put, other than those which are suspended on the rack above.
The advantage of this is, that a bench will accumulate a quantity of material that the tools can hide in, and there is nothing more annoying than to hunt over a lot of trash to get what is needed. It is necessary to emphasize the necessity of always putting a tool back in its proper place, immediately after using.
HOW TO GRIND AND SHARPEN TOOLS
It is singular, that with the immense variety of tools set forth in the preceding chapter, how few, really, require the art of the workman to grind and sharpen. If we take the lathe, the drilling machine, as well as the shaper, planer, milling machine, and all power-driven tools, they are merely mechanism contrived to handle some small, and, apparently, inconsequential tool, which does the work on the material.
IMPORTANCE OF THE CUTTING TOOL.--But it is this very fact that makes the preparation of that part of the mechanism so important. Here we have a lathe, weighing a thousand pounds, worth hundreds of dollars, concentrating its entire energies on a little bit, weighing eight ounces, and worth less than a dollar. It may thus readily be seen that it is the little bar of metal from which the small tool is made that needs our care and attention.
This is particularly true of the expensive milling machines, where the little saw, if not in perfect order, and not properly set, will not only do improper work, but injure the machine itself. More lathes are ruined from using badly ground tools than from any other cause.
In the whole line of tools which the machinist must take care of daily, there is nothing as important as the lathe cutting-tool, and the knowledge which goes with it to use the proper one.
Let us simplify the inquiry by considering them under the following headings:
THE GRINDER.--The first mistake the novice will make, is to use the tool on the grinder as though it were necessary to grind it down with a few turns of the wheel. Haste is not conducive to proper sharpening. As the wheel is of emery, corundum or other quickly cutting material, and is always run at a high rate of speed, a great heat is evolved, which is materially increased by pressure.
Pressure is injurious not so much to the wheel as to the tool itself. The moment a tool becomes heated there is danger of destroying the temper, and the edge, being the thinnest, is the most violently affected. Hence it is desirable always to have a receptacle with water handy, into which the tool can be plunged, during the process of grinding down.
CORRECT USE OF GRINDER.--Treat the wheel as though it is a friend, and not an enemy. Take advantage of its entire surface. Whenever you go into a machine shop, look at the emery wheel. If you find it worn in creases, and distorted in its circular outline, you can make up your mind that there is some one there who has poor tools, because it is simply out of the question to grind a tool correctly with such a wheel.
Coarse wheels are an abomination for tool work. Use the finest kinds devised for the purpose. They will keep in condition longer, are not so liable to wear unevenly, and will always finish off the edge better than the coarse variety.
LATHE BITS.--All bits made for lathes are modifications of the foregoing types .
Add to tbrJar First Page Next Page Prev Page