bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The Art of Horse-Shoeing: A Manual for Farriers by Hunting William

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 349 lines and 27465 words, and 7 pages

n has no equal. It can be obtained in bars of various sizes to suit any form and weight of shoe, and the old shoes made from it may be worked up over and over again.

The chief objects to be attained in any particular pattern or form of shoe are--that it be light, easily and safely retained by few nails, capable of wearing three weeks or a month, and that it afford good foot-hold to the horse. All shoes should be soundly worked and free from flaws.

The first shoes were doubtless applied solely to protect the foot from wear. The simplest arrangement would then be either a thin plate of iron covering the ground surface of the foot, or a narrow rim fixed merely round the lower border of the wall. Experience teaches that these primitive forms can be modified with advantage, and that certain patterns are specially adapted to our artificial conditions. A good workman requires no directions as to how he should work, and it is doubtful if a bad one would be benefitted by any written rules, but it should be noted that a well-made shoe may be bad for a horse's foot, whilst a very rough, badly-made one may, when properly fitted, be a useful article. To make and apply horse-shoes a man must be more than a clever worker in iron--he must be a farrier, and that necessitates a knowledge of the horse's foot and the form of shoe best adapted to its wants.

The following are about the average weights, per shoe, of horses standing 16 hands high:

Race Horses 2 to 4 ounces. Hacks and Hunters 15 to 18 " Carriage Horses 20 to 30 " Omnibus " 3 to 3-1/2 lbs. Dray " 4 to 5 "

A thick shoe raises the foot from the ground and thus removes the frog from bearing--a very decided disadvantage. It also requires the larger sizes of nails to fill up the deep nail holes, and very often renders the direction of the nail holes a matter of some difficulty.

The width of a shoe may beneficially vary. It should be widest at the toe to afford increased surface of iron where wear is greatest. It should be narrowest at the heels so as not to infringe upon the frog, nor yet to protrude greatly beyond the level of the wall. The thickness of a shoe should not vary unless, perhaps, it be reduced in the quarters. Heel and toe should be of the same thickness so as to preserve a level bearing. Excess of thickness at the toe puts a strain on the back tendons, whilst excess at the heels tends to straighten the pastern.

This form is very widely used. It consists of a narrow flat surface next the outer circumference of the shoe, about equal in width to the border of the wall, and within that, of a bevelled surface, sloped off so as to avoid any pressure on a flat sole. This "seated" surface is not positively injurious but it limits the bearing to the wall, and neglects to utilise the additional bearing surface offered by the border of the sole. If shoes were to be made all alike no shoe is so generally useful and safe as one with a foot-surface of this form, but it is evident that when the sole of the foot is concave there is nothing gained by making half the foot-surface of the shoe also concave.

There are two other forms of foot-surface on shoes. In one the surface slopes gradually from the outer to the inner edge of the shoe, like the side of a saucer. In the other the incline is reversed and runs from the inner edge downwards to the outer. This last form is not often used, and was invented with the object of spreading or widening the foot to which it was attached. The inventor seemed to think that contraction of a foot was an active condition to be overcome by force, and that expansion might be properly effected by a plan of constantly forcing apart the two sides of the foot. The usual result of wearing such a shoe is lameness, and it achieves no good which cannot be as well reached by simply letting the foot alone.

The foot-surface which inclines downwards and inwards like a saucer acts in an exactly opposite way to the other. The wall cannot rest on the outer edge of the shoe, and consequently falls within it, the effect being that at every step the horse's foot is compressed by the saucer-shaped bearing. This form of surface is frequently seen, and is at all times bad and unnecessary. Even when making a shoe for the most convex sole it is possible to leave an outer bearing surface, narrow but level, which will sustain weight without squeezing the foot.

At the heels the foot-surface of all shoes should be flat--not seated--so that a firm bearing may be obtained on the wall and the extremity of the bar. No foot is convex at the heels, therefore there is no excuse for losing any bearing surface by seating the heels of a shoe to avoid uneven pressure. Fig. 36 rather exaggerates the "unseated" portion of shoe.

The concave shoe, often described as a hunting-shoe, presents a very different ground-surface from that just referred to. It rests upon two ridges with the fullering between, and on the inner side of these the iron is suddenly sloped off. This shoe is narrow and flat on the foot-surface, and is specially formed to give a good foot-hold and to be secure on the hoof.

A Rodway shoe has two longitudinal grooves and three ridges on its ground-surface. The outer groove carries the nails, and the inner groove lightens the shoe and increases the foot-hold. It is not the number of grooves or ridges that prevents slipping; it is the absence of a continuous flat surface of iron, and the existence of irregularities which become filled up with sand and grit. A four-grooved shoe has no more anti-slipping properties than a three-grooved, and a one-grooved shoe is as good as either, although it cannot stand the same amount of wear.

Transverse ridges and notches have also been tried as ground-surfaces for shoes, but offer very little, if any, better grip than the longitudinal grooves. Their great disadvantage is that they cannot be made deep enough without weakening the shoe, whilst if shallow they are worn out before the shoe has been long in wear.

The wear of a shoe is affected by the height of a calkin. The more the heel is raised the greater the amount of wear at the toe. Many shoes when worn out at the toe show very little effects of wear at other parts, and the question arises how best to increase the wear of the shoe without increasing its weight. In Fig. 39 three diagrams are presented in which dotted lines show the effect of wear. At the shoe is of even thickness throughout--from heel to toe--and the line of wear shows that when the shoe is worn out a great amount of iron remains. At the quarters of the shoe are made thinner and the toe is made thicker, so that with no increase of weight but by a better distribution of the iron, increased wear is provided for at the part where it is most required. At is shown a shoe similar in form to that at but differently fitted. The toe is turned slightly upwards, and the result is that a larger portion of iron is brought into wear. In the case of very hard-wearing horses that scrape out the toe of the ordinary shoe in ten or fourteen days this form of fitting adds considerably to the durability of the shoe, and so preserves the foot from the evil of too frequent removal of shoes, whilst avoiding any increase of weight. Without calkins wear is more evenly distributed, and the toe is not worn away disproportionately to the rest of the shoe.

A calkin throws the leg and foot, to some extent, out of their proper position. A very high calkin is not only objectionable, it is unnecessary. Not much prominence is required to afford a catch or stop. Excessive height is usually given to meet wear, and this can be obtained equally well by increasing the width and breadth. I, therefore, recommend that when calkins are used they should be low, square and broad. The further under a foot the calkin is placed, the greater is the raising of the heel, therefore calkins should always be accompanied by a long shoe. The further back a calkin be placed the less it interferes with the natural position of the foot.

Calkins render a horse liable to tread the opposite foot, and the higher and sharper the calkin the greater the injury inflicted. To avoid this injury the inner heel of a shoe frequently has no calkin, but is made at the same level as the outer by narrowing and raising the iron at the heel, forming what is called a wedge heel. This is not an advisable form of shoe as it has on the inner heel a skate-shaped formation, most favourable to slipping, and on the outer a catch--an arrangement tending to twist the foot each time the catch takes hold of the ground. If calkins are used at all they should be of equal height and on both heels of the shoe.

In Scotland, and in the North of England, heavy horses are shod, fore and hind, not only with calkins but also with toe-pieces, and the owners assert that the horses could not do the work without them. That horses do similar work in the South without calkins and toe-pieces rather shakes one's faith in the assertion, but it must be remembered that nearly all paved streets in the North have a division left between the rows of stones in which the toe-piece finds a firm resisting surface. I believe also that the average load drawn is greater in the North than in the South. One thing in favour of toe-pieces must be acknowledged--they, with the calkins, restore the natural position of the foot and preserve the level of the shoe. On the larger draught horses the toe-pieces permit a lighter shoe to be used, as the portion of iron between heels and toe need not be thick to resist wear. It only requires to be strong enough to support weight and much less iron is therefore used.

The heavy dray horse of the North, shod with toe-pieces and calkins, is never worked at a trot. In London all horses are trotted--a proceeding which reflects discredit upon the intelligence of the managers.

I must mention another objection to calkins. They increase the tendency to "cut," and many horses will cease "cutting" after calkins are removed and a level shoe has been adopted.

A good nail should present certain forms of head, neck and shank. The head should not be too broad at the top or it may become fixed in the nail-hole only by its upper edge, as shown in the middle diagram Fig. 41, and when the shoe has had a few days wear the nail loses its hold, and the shoe is loose. The neck should not be too thick, as it is then liable to press on the sensitive foot and to break the wall. The shank should not be too wide or too thick. The point should not be too long or too tapered as this leaves insufficient metal to form a good clinch.

There are two methods of putting nail-holes into shoes--by "fullering" and by "stamping." A stamped shoe is one in which the nail holes are merely punched at certain distances, so as to leave four-sided tapered holes of the exact shape of a nail-head. A fullered shoe is one having a groove round the circumference through which the nail-holes are punched. Both processes, when well-done, admit of nails being driven into the hoof with equal safety and ease.

Whether stamped or fullered, there are a few more important points to remember about the nail-holes. The wall is not of the same thickness throughout, but becomes thinner towards the heels. The inner side of the foot is also somewhat thinner and more upright than the outer. The safest position, then, for the nails is in the front half of the foot, but should this position not present sound horn they may be placed further back. The danger of placing nails near the heels is due entirely to the greater risk in driving them through the thin horn. There need be no fear of interfering with expansion.

The distance of the nail-holes from the outer edge of the shoe should depend upon the thickness of the horn of the wall, and therefore be greater in large shoes than in smaller, and greater at the toe than at the heels of the same shoe. When the nail-holes are all near to the circumference of the shoe they are described as "fine"; when they are all placed far from the edge they are called "coarse." When the nail-holes are too "fine" a nail has to be driven high up in the wall to obtain a firm hold, and this is liable to split the horn. When nail-holes are too "coarse" the nail in driving goes dangerously near the sensitive foot. The evils of coarse and fine nailing depend a great deal upon the method of fitting the shoes. When shoes are fitted full to the foot "coarse" nail-holes are brought to about their best position. When shoes are fitted close "fine" nail-holes are brought to their best position in relation to the foot. It need hardly be added that the fit of a shoe ought not to be subject to the position of the nail-holes, but that these should be properly placed so that fitting be guided only by the requirements of the foot.

Each nail-hole when properly placed--neither too coarse nor too fine--should be punched straight through the shoe and not inclined either inwards or outwards, except at the toe where the slope of the wall is followed by slightly pitching in. When a fuller is used the groove made should be wide; then the farrier has more command over the direction of his nail. If the nail-hole be pitched in, the nail must take that direction and is liable to wound the foot. If the nail-hole be pitched out, the nail is prevented from taking sufficient hold of the horn.

The position and direction of the nail-hole control the passage of a nail through a shoe and into the hoof. The man who drives a nail is usually blamed for laming a horse, but in most cases it would be more just to blame the man who made the nail-holes or fitted the shoe and so rendered safe driving difficult or impossible.

Each nail-hole should be as far as possible from the other--say, from an inch to an inch and a half apart. When the two front or toe nail-holes are put too far back the whole are crowded, or the last are pushed back too near the heels.

For small shoes four or five nail-holes are sufficient. Medium-sized shoes should have from five to seven, and the heavy shoes of big draught horses must have eight. The number of nail-holes need not always be increased in proportion to the size of the shoe, because as the weight of shoe is increased so is the size of the nail, and an extra strong nail may take the place of additional ones. The fewer nails in a foot the better, but as a properly-placed nail does no harm, and as the loss of a shoe may be very serious, it is better to have one too many than one too few.

In little shops where often only one man is at work, either machine-made shoes or prepared bar iron offer great conveniences. The prepared bars can be bought seated on the foot-surface and with a single or double groove on the ground-surface. Very narrow bars suitable for tips, "Charlier," or light hack shoes are now widely used, and a special bar--flat on the foot-surface, concave to the ground--can be obtained which only requires cutting into lengths and turning round to form a first-class hunting-shoe.

Both prepared bars and machine-made shoes must be judged by their form and by the material used in their manufacture. Some are better than others, but all have to contend with a large amount of trade prejudice which has little basis except in the matter of the hind shoes--here machinery has not yet reached perfection.

SELECTION OF SHOES.

In practice, a farrier does not trouble much about the selection of suitable shoes. The rule is to apply whatever form of shoe the horse has been wearing, and only to venture an opinion as to alterations when asked by the owner. When the selection of a suitable shoe is left to the workman he takes into consideration the work required of the horse, the form of the feet, and the wear of the old shoes. The form of the old shoes indicates not only whether a horse is a light or hard wearer but what parts of the shoe are most worn, and thus enables provision to be made against excessive or irregular wear. The form of the feet indicates not only what size of shoe is requisite but also what special weakness or strength is to be encountered. It is also necessary to note the condition of the fetlocks and knees, which may show signs of "brushing" or "speedy cutting." According to all these appearances a shoe should be selected. For the different classes of horse there are well-known forms of shoe which present special advantages, thus:--

FITTING AND APPLICATION OF SHOES.

Having selected shoes suitable for the feet and adapted to the special work of the horse, having also prepared the foot for shoeing, we arrive at another important part of the farriers' art--fitting the shoe. No matter what form of shoe be used or how the foot be prepared for it, unless the two are properly fitted the horse does not obtain all the advantages of good shoeing, and may be positively injured. The owner of horses seldom knows anything about the fitting of shoes, and therefore fails to appreciate how some of his directions concerning feet and shoes are quite impracticable.

I have in a previous chapter attempted to show how a foot should be prepared for shoeing, and what bearing surface should be left for the shoe. I have also described what I consider the best forms of shoe. The object at all times should be to follow nature as closely as possible, but it often happens that we may, with benefit, depart from the exact indications given and still fulfil all essential requirements. If we examine the unshod foot which has been worn down to proper proportions we find the bearing surface is not level--it is worn more at the toe and heels than elsewhere. If we examine the ground surface of an old shoe the same thing is noticed--the surface is not level, the toe and heel show most wear. The question then arises, should we make the artificial bearing surface of the foot on the same plan and adjust the shoe to it, as in Fig. 48, or should we make the surface level and apply a level shoe as in Fig. 49? I believe that the ideal arrangement would be to follow the line suggested by a worn foot or a worn shoe, but it is difficult to carry out, and greater exactness of fit is more readily obtained by two level surfaces. The ground surface of a shoe may, if necessary, be altered to suit the outline of wear, whilst the level foot-surface is preserved, as in Fig. 50.

Whatever form the farrier adopts, a shoe should rest equally throughout, and the contact of foot and shoe should be exact over the whole bearing surface. Assuming then that a properly prepared foot presents a level surface, the fitting of shoes becomes simple so long as the smith possesses manual dexterity and follows the indications of common sense.

There are two conditions to be fulfilled, to fit the shoe to the plain surface of the foot, to fit the shoe to the circumference of the wall. Most amateurs judge shoeing by the way a shoe follows the outline of the hoof, but the practical man knows that it is equally difficult and important to fit the surface.

A shoe fitted too wide is liable to be trodden off by the opposite foot, or it may cause the horse to hit the opposite fetlock joint.

The length of a shoe at the heels is a matter of more importance than is generally recognised. As a rule hunters are all shod too short, while most cart horses are shod too long. The objections to a long front shoe are that it is liable to be trodden off by the hind shoe, and that it may injure the elbow when the horse lies down. A long hind shoe is free from both these disadvantages, and as it usually has a calkin is the best form to adopt.

In fitting the heels of front shoes, in all but galloping horses, the iron should generally extend slightly behind the extremity of the horn. . Horses used for galloping should have the end of the shoe just within the termination of the horn, and should finish with an oblique extremity. . There is nothing gained by greater shortening, if the iron be fitted exactly to the horn. Why shoes are often pulled off, when only just the length of the hoof, is because they are not fitted close enough, and very often because they are wilfully and ignorantly designed to leave a space between hoof and iron. This so-called "eased" heel is an unmitigated evil.

There are two places where injury from uneven pressure is most likely to happen--at the toe and at the heels.

In preparing a foot the wall at the toe may, from want of care, be reduced a little below the level of the sole, or in making a shoe the inside border at the toe may be left higher than the outside. In each case uneven pressure is placed on the sole just where the back border of the shoe rests. In fitting a hot shoe, wherever the hoof is unduly marked warning is given that pressure at that point must be prevented by altering the surface either of the shoe or the foot. On a strong foot, the knife may be used to remove a little horn; on a weak foot the alteration must be on the shoe.

At the the heel uneven pressure is most frequent on the angle of sole between the wall and bar, where it causes the so-called "corn"--a condition in the horse having no analogy to the affliction similarly named in the human subject. It is simply a bruise of the sensitive parts under the horn.

A bruised heel--a corn--is most likely to arise from the use of a shoe too short, especially if fitted too close. It may arise from a properly-fitted shoe retained too long on the foot and shifted from its proper bearing on the wall to an improper bearing on the sole. A bruised heel may also result from the use of a well-made shoe if the preparation of the hoof has been faulty. Rule-of-thumb directions to "reduce the heels to a level by the use of the rasp, but on no account cut away any sole" may result in injury. In a strong foot with an overgrown sole it is easy to get a level surface and to fit on to it a level shoe, but the horn of the sole does not remain level. As it grows and flakes off the portion between the bar and wall is raised. If the weather be wet it swells, and then, bound down by the shoe, it acts simply as a stone might and bruises the sensitive parts within by its uneven pressure. It is always safe and it is never injurious to remove so much of the surface of this portion of sole with the drawing-knife as will ensure no uneven pressure on it by the shoe.

The more exactly the shoe fits the foot-surface the more easily it is retained in position by the nails, and the less likelihood there is of any part of it pressing distinctly on a limited portion of horn. Exact fitting allows all bearings and pressures to be distributed equally over the surface of the hoof, and thus permits the shoe most nearly to resemble a mere continuation of the hoof in iron--an arrangement to prevent wear, but not to interfere with natural functions. There is one departure from level fitting which requires special notice since it is made, not by accident or negligence, but by design. It consists in taking the bearing of an inch or an inch and a half of the extremity of a shoe off the foot. . It has been called "easing the heels," and the space permits a knife-blade, sometimes even a pencil, to be placed between the shoe and the foot. It is one of the very worst practices that theory has forced into horse-shoeing. Men who do it say "the heels won't stand pressure." I reply they will stand all proper pressure, and a good deal more than the quarters. But the practice does not relieve the heels of pressure. If you examine a shoe fitted in this way, after it has done a month's service, you will find it sometimes polished bright, sometimes with a deep groove worn into it. You may also test its bearing by raising the foot from the ground and inserting between shoe and hoof a flat bit of wood, then on releasing the foot and raising the opposite one, you will find that the bearing is such that the bit of wood cannot be removed. The "eased heel" does not relieve the heels of pressure but, instead of constant normal bearing, it permits a downward movement of the back of the foot at each step--which is unnatural, and which cannot occur in an unshod foot on a level surface. The "eased heel" does more than this. It wastes a large extent of good bearing-surface, and it concentrates pressure at one point--where the shoe and foot meet--at the quarters. It loses good bearing-surface where it is important to have it, and unevenly throws extra weight on the quarters which are the weakest parts of the wall. An "eased heel" has not one single advantage, but it has every disadvantage which misplaced ingenuity could contrive.

For flat feet a wide shoe with a flat foot-surface is unsafe as there is liability to uneven pressure on the sole. For such feet the safer form of foot-surface is one presenting a level narrow bearing-surface round its outer border, from which an inclined or bevelled surface continues the shoe inwards. This form of shoe can be fitted to nearly any kind of foot. To escape injury to a flat sole "seating out" shoes is necessary, but the operation should always leave a level bearing-surface for the wall. When a shoe is seated from one side to the other so as to produce a saucer shaped surface harm is done to the foot. Such a shoe presents no level bearing-surface, and the weight of the horse pressing the wall on an inclined plane causes the foot to be pinched or compressed in a manner which soon causes lameness. . A few years ago these shoes were too common, and to make them still more injurious, the foot was pared out from the centre to the circumference like a saucer, and the two spoiled articles were fitted together. Their surfaces of contact were two narrow ridges which even the most expert workman could not fit without injury to the horse.

In Fig. 52 a shoe with an inclined surface is applied to a foot with a bearing-surface as wide as the wall but the only contact is at the edges. The horn at the edge will yield, and the hoof be pressed inwards as the weight of the animal forces the foot into the saucer-shaped shoe. When the bearing-surface of the foot, instead of being as wide as the wall, is only a ridge, the horn yields more rapidly, the clinches rise and the shoe becomes loose.

In Fig. 53 is shown a section of another shoe with an inclined instead of a level surface, but the slope is from within outwards. The effect of this is exactly the opposite of the previous shoe. The wall is forced outwards, and if it does not as a whole yield to the pressure the portion in contact is broken. When this form of bearing-surface is adopted at the heels of a shoe the two sides of the hoof are violently forced apart, and it has even been recommended as a means of expanding the foot; but forcible expansion is both unnecessary and dangerous.

Always regarding the shoe as an extension of the natural hoof in a harder and more durable material, it is evident that the most stability will be attained by the use of as wide a bearing-surface of foot and shoe as is compatible with ease and safety to the horse.

In Fig. 54 is shown a section of a narrow shoe which takes a bearing over the whole extent of its foot-surface.

In Fig. 55 is shown a shoe with as wide a bearing-surface as in Fig. 54, but which loses half its bearing because the foot-surface is too narrow to utilise it.

Add to tbrJar First Page Next Page

 

Back to top