Read this ebook for free! No credit card needed, absolutely nothing to pay.
Words: 54896 in 21 pages
This is an ebook sharing website. You can read the uploaded ebooks for free here. No credit cards needed, nothing to pay. If you want to own a digital copy of the ebook, or want to read offline with your favorite ebook-reader, then you can choose to buy and download the ebook.

: Climatic Changes: Their Nature and Causes by Huntington Ellsworth Visher Stephen Sargent - Climatology; Paleoclimatology; Climatic changes
far northern latitudes during some of the milder geological periods. If, however, the general temperature of the earth's surface were raised 5? because of the scarcity of storms, if the currents were strong enough so that they increased the present anomaly by 50 per cent, and if more persistent sunshine in summer raised the temperature at that season about 4?C., the January temperature would be 18?C. and the July temperature 22?C. These figures perhaps make summer and winter more nearly alike than was ever really the case in such latitudes. Nevertheless, they show that a diminution of storms and a consequent strengthening and steadying of the southwesterlies might easily raise the temperature of the Norwegian coast so high that corals could flourish within the Arctic Circle.
Another factor would co?perate in producing mild temperatures in high latitudes during the winter, namely, the fogs which would presumably accumulate. It is well known that when saturated air from a warm ocean is blown over the lands in winter, as happens so often in the British Islands and around the North Sea, fog is formed. The effect of such a fog is indeed to shut out the sun's radiation, but in high latitudes during the winter when the sun is low, this is of little importance. Another effect is to retain the heat of the earth itself. When a constant supply of warm water is being brought from low latitudes this blanketing of the heat by the fog becomes of great importance. In the past, whenever cyclonic storms were weak and westerly winds were correspondingly strong, winter fogs in high latitudes must have been much more widespread and persistent than now.
The bearing of fogs on vegetation is another interesting point. If a region in high latitudes is constantly protected by fog in winter, it can support types of vegetation characteristic of fairly low latitudes, for plants are oftener killed by dry cold than by moist cold. Indeed, excessive evaporation from the plant induced by dry cold when the evaporated water cannot be rapidly replaced by the movement of sap is a chief reason why large plants are winterkilled. The growing of transplanted palms on the coast of southwestern Ireland, in spite of its location in latitude 50?N., is possible only because of the great fogginess in winter due to the marine climate. The fogs prevent the escape of heat and ward off killing frosts. The tree ferns in latitude 46?S. in New Zealand, already referred to, are often similarly protected in winter. Therefore, the relative frequency of fogs in high latitudes when storms were at a minimum would apparently tend not merely to produce mild winters but to promote tropical vegetation.
The strong steady trades and southwesterlies which would prevail at times of slight solar activity, according to our hypothesis, would have a pronounced effect on the water of the deep seas as well as upon that of the surface. In the first place, the deep-sea circulation would be hastened. For convenience let us speak of the northern hemisphere. In the past, whenever the southwesterly winds were steadier than now, as was probably the case when cyclonic storms were relatively rare, more surface water than at present was presumably driven from low latitudes and carried to high latitudes. This, of course, means that a greater volume of water had to flow back toward the equator in the lower parts of the ocean, or else as a cool surface current. The steady southwesterly winds, however, would interfere with south-flowing surface currents, thus compelling the polar waters to find their way equatorward beneath the surface. In low latitudes the polar waters would rise and their tendency would be to lower the temperature. Hence steadier westerlies would make for lessened latitudinal contrasts in climate not only by driving more warm water poleward but by causing more polar water to reach low latitudes.
At this point a second important consideration must be faced. Not only would the deep-sea circulation be hastened, but the ocean depths might be warmed. The deep parts of the ocean are today cold because they receive their water from high latitudes where it sinks because of low temperature. Suppose, however, that a diminution in storminess combined with other conditions should permit corals to grow in latitude 70?N. The ocean temperature would then have to average scarcely lower than 20?C. and even in the coldest month the water could scarcely fall below about 15?C. Under such conditions, if the polar ocean were freely connected with the rest of the oceans, no part of it would probably have a temperature much below 10?C., for there would be no such thing as ice caps and snowfields to reflect the scanty sunlight and radiate into space what little heat there was. On the contrary, during the winter an almost constant state of dense fogginess would prevail. So great would be the blanketing effect of this that a minimum monthly temperature of 10?C. for the coldest part of the ocean may perhaps be too low for a time when corals thrived in latitude 70?.
The temperature of the ocean depths cannot permanently remain lower than that of the coldest parts of the surface. Temporarily this might indeed happen when a solar change first reduced the storminess and strengthened the westerlies and the surface currents. Gradually, however, the persistent deep-sea circulation would bring up the colder water in low latitudes and carry downward the water of medium temperature at the coldest part of the surface. Thus in time the whole body of the ocean would become warm. The heat which at present is carried away from the earth's surface in storms would slowly accumulate in the oceans. As the process went on, all parts of the ocean's surface would become warmer, for equatorial latitudes would be less and less cooled by cold water from below, while the water blown from low latitudes to high would be correspondingly warmer. The warming of the ocean would come to an end only with the attainment of a state of equilibrium in which the loss of heat by radiation and evaporation from the ocean's surface equaled the loss which under other circumstances would arise from the rise of warm air in cyclonic storms. When once the oceans were warmed, they would form an extremely strong conservative force tending to preserve an equable climate in all latitudes and at all seasons. According to the solar cyclonic hypothesis such conditions ought to have prevailed throughout most of geological time. Only after a strong and prolonged solar disturbance with its consequent storminess would conditions like those of today be expected.
In this connection another possibility may be mentioned. It is commonly assumed that the earth's axis is held steadily in one direction by the fact that the rotating earth is a great gyroscope. Having been tilted to a certain position, perhaps by some extraneous force, the axis is supposed to maintain that position until some other force intervenes. Cordeiro, however, maintains that this is true only of an absolutely rigid gyroscope. He believes that it is mathematically demonstrable that if an elastic gyroscope be gradually tilted by some extraneous force, and if that force then ceases to act, the gyroscope as a whole will oscillate back and forth. The earth appears to be slightly elastic. Cordeiro therefore applies his formulae to it, on the following assumptions: That the original position of the axis was nearly vertical to the plane of the ecliptic in which the earth revolves around the sun; that at certain times the inclination has been even greater than now; and that the position of the axis with reference to the earth has not changed to any great extent, that is, the earth's poles have remained essentially stationary with reference to the earth, although the whole earth has been gyroscopically tilted back and forth repeatedly.
With a vertical axis the daylight and darkness in all parts of the earth would be of equal duration, being always twelve hours. There would be no seasons, and the climate would approach the average condition now experienced at the two equinoxes. On the whole the climate of high latitudes would give the impression of being milder than now, for there would be less opportunity for the accumulation of snow and ice with their strong cooling effect. On the other hand, if the axis were tilted more than now, the winter nights would be longer and the winters more severe than at present, and there would be a tendency toward glaciation. Thus Cordeiro accounts for alternating mild and glacial epochs. The entire swing from the vertical position to the maximum inclination and back to the vertical may last millions of years depending on the earth's degree of elasticity. The swing beyond the vertical position in the other direction would be equally prolonged. Since the axis is now supposed to be much nearer its maximum than its minimum degree of tilting, the duration of epochs having a climate more severe than that of the present would be relatively short, while the mild epochs would be long.
Cordeiro's hypothesis has been almost completely ignored. One reason is that his treatment of geological facts, and especially his method of riding rough-shod over widely accepted conclusions, has not commended his work to geologists. Therefore they have not deemed it worth while to urge mathematicians to test the assumptions and methods by which he reached his results. It is perhaps unfair to test Cordeiro by geology, for he lays no claim to being a geologist. In mathematics he labors under the disadvantage of having worked outside the usual professional channels, so that his work does not seem to have been subjected to sufficiently critical analysis.
Without expressing any opinion as to the value of Cordeiro's results we feel that the subject of the earth's gyroscopic motion and of a possible secular change in the direction of the axis deserves investigation for two chief reasons. In the first place, evidences of seasonal changes and of seasonal uniformity seem to occur more or less alternately in the geological record. Second, the remarkable discoveries of Garner and Allard show that the duration of daylight has a pronounced effect upon the reproduction of plants. We have referred repeatedly to the tree ferns, corals, and other forms of life which now live in relatively low latitudes and which cannot endure strong seasonal contrasts, but which once lived far to the north. On the other hand, Sayles, for example, finds that microscopical examination of the banding of ancient shales and slates indicates distinct seasonal banding like that of recent Pleistocene clays or of the Squantum slate formed during or near the Permian glacial period. Such seasonal banding is found in rocks of various ages: Huronian, in cobalt shales previously reported by Coleman; late Proterozoic or early Cambrian in Hiwassee slate; lower Cambrian, in Georgian slates of Vermont; lower Ordovician, in Georgia , Tennessee , Vermont , and Quebec ; and Permian in Massachusetts . How far the periods during which such evidence of seasons was recorded really alternated with mild periods, when tropical species lived in high latitudes and the contrast of seasons was almost or wholly lacking, we have as yet no means of knowing. If periods characterized by marked seasonal changes should be found to have alternated with those when the seasons were of little importance, the fact would be of great geological significance.
The discoveries of Garner and Allard as to the effect of light on reproduction began with a peculiar tobacco plant which appeared in some experiments at Washington. The plant grew to unusual size, and seemed to promise a valuable new variety. It formed no seeds, however, before the approach of cold weather. It was therefore removed to a greenhouse where it flowered and produced seed. In succeeding years the flowering was likewise delayed till early winter, but finally it was discovered that if small plants were started in the greenhouse in the early fall they flowered at the same time as the large ones. Experiments soon demonstrated that the time of flowering depends largely upon the length of the daily period when the plants are exposed to light. The same is true of many other plants, and there is great variety in the conditions which lead to flowering. Some plants, such as witch hazel, appear to be stimulated to bloom by very short days, while others, such as evening primrose, appear to require relatively long days. So sensitive are plants in this respect that Garner and Allard, by changing the length of the period of light, have caused a flowerbud in its early stages not only to stop developing but to return once more to a vegetative shoot.
Common iris, which flowers in May and June, will not blossom under ordinary conditions when grown in the greenhouse in winter, even under the same temperature conditions that prevail in early summer. Again, one variety of soy beans will regularly begin to flower in June of each year, a second variety in July, and a third in August, when all are planted on the same date. There are no temperature differences during the summer months which could explain these differences in time of flowering; and, since "internal causes" alone cannot be accepted as furnishing a satisfactory explanation, some external factor other than temperature must be responsible.
Free books android app tbrJar TBR JAR Read Free books online gutenberg
More posts by @FreeBooks

: Present Irish Questions by Morris William O Connor - Ireland Politics and government 1901-1910; Land tenure Ireland